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Preface

This book is the second volume of applications for the ADSP-2100 Family of
Digital Signal Processors, and it is intended to complement, rather than
replace the information contained in Digital Signal Processing Applications
Using the ADSP-2100 Family, Volume 1. Each chapter embraces a single
application topic, briefly describes the algorithm, and discusses its
implementation on ADSP-2100 Family Processors. Although several topics
contained in this book are addressed in Volume 1, the information presented
here will provide you with a new perspective when approaching these topics.

If you want to understand how processors optimized for digital signal
processing, such as the ADSP-2100 Family, are used to solve particular
problems, you will find this book informative. The topics explored in this
volume include, but are not limited to, telecommunications, hardware
interfaces, and data encoding, decoding, and transmission.

This book does not provide full explanations of the signal processing theory
behind the applications. The contributors and editor assumed that you
already understand the theory and practice applying to your area of interest.
Digital Signal Processing in VLSI*, a companion book in the Analog Devices
technical reference set, provides much of the necessary basics. The references
listed at the end of many of the chapters provide a wealth of additional
information.

This volume includes solutions that vary in length and complexity. Here is a
brief summary of each chapter’s contents:

e Introduction

Overviews of the ADSP-2100 Family base architecture, additional peripherals
on the ADSP-2101, ADSP-2111, and ADSP-21msp50, assembly language, and
development system.

* Modems

Implementations for V.32, V.27 ter, and V.29 modems.

* Linear Predictive Coding

Techniques used to analyze, encode, and decode 7.8 kbits/s and 2.4 kbits/s
speech signals.

*Higgins, Richard J., Digital Signal Processing in VLSI. Englewood Cliffs, NJ: Prentice Hall 1990



* GSM Codec

Implementation of the Pan-European Digital Mobile Radio (DMR) Speech
Codec Specification 06.10. This chapter also includes subroutines for Voice
Activity Detection (VAD, Specification 06.32) and Comfort Noise Insertion
(CNI, Specification 06.12).

* Sub-Band Adaptive Differential Pulse Code Modulation

Implementation of the CCITT Sub-band ADPCM Recommendation G.722.

® Speech Recognition

A design example and demonstration that implements a speech recognition
system using the ADSP-2101 EZ-LAB Demonstration Board and an expansion
board.

¢ Discrete Cosine Transform

Implementation of an algorithm that performs a Discrete Cosine Transform.
* Digital Tone Detection

Techniques for detecting digital representations of sinusoidal tones.

* Digital Control System Design

Several algorithms and software and hardware design methods and
guidelines for high-speed digital control systems.

* Variations On IIR Biquad Filters

Several variations on the basic IIR biquad filter that include multiprecision
filters and optimized filter subroutines.

* Software UART

Software implementation of a Universal Asynchronous Receiver/Transmitter.
* Hardware Interfacing

Hardware and software interface solutions that include SoundPort®

interfaces, a DRAM interface, loading a program through the serial port
(SPORT), and a memory interface for the ADSP-2105.
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Introduction

1.1 OVERVIEW

This book is the second volume of digital signal processing applications
based on the ADSP-2100 DSP microprocessor family. It contains a
compilation of routines for a variety of common digital signal processing
applications. As in the first volume, you may use these routines without
modification or you can use them as a starting point for the development
of routines tailored to your particular needs.

Besides showing the specific applications, these routines demonstrate a
variety of programming techniques for getting the most performance out
of the ADSP-2100 family processors. For example, several routines show
you how to use address pointers efficiently to address circular buffers. We
believe that you will benefit from reading every chapter, even if your
present application uses only a single topic.

Some material in this book was originally published in an applications
handbook that featured modem routines. The information in that volume
was updated and integrated into this book, which supersedes the earlier
publication.

1.2 ADSP-2100 FAMILY PROCESSORS

This section briefly describes the ADSP-2100 family of processors. For
complete information, refer to the ADSP-2100 Family User’s Manual, (ISBN
0-13-006958-2) available from Prentice Hall and Analog Devices. For the
applications in this book, “ADSP-2100" refers to any processor in the
ADSP-2100 family unless otherwise noted. At the time of publication, the
ADSP-2100 Family consisted of the following members:

¢ ADSP-2100A—DSP microprocessor with off-chip Harvard architecture

e ADSP-2101—DSP microcomputer with on-chip program and data
memory

¢ ADSP-2103—Low-voltage microcomputer, 3.3-volt version of ADSP-
2101
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e ADSP-2105—Low-cost DSP microcomputer
¢ ADSP-2111—DSP microcomputer with Host Interface Port
e ADSP-2115—High-performance, Low-cost DSP microcomputer

e ADSP-2161/62/63/64—Custom ROM-programmed DSP
microcomputers

* ADSP-2165/66—Custom ROM-programmed DSP microcomputers
with larger on-chip memories and powerdown

¢ ADSP-21msp5x—Mixed-Signal DSP microcomputers with integrated,
on-chip analog interface and powerdown

¢ ADSP-2171—Enhanced ADSP-2100 Family processor offering 33 MIPS
performance, host interface port, powerdown, and instruction set
extensions for bit manipulation, multiplication, biased rounding, and
global interrupt masking

Since Analog Devices strives to provide products that exploit the latest
technology, new family members will be added to this list periodically.
Please contact your local Analog Devices sales office or distributor for a
complete list of available products.

The ADSP-2100A is a programmable single-chip microprocessor opt1mlzed
fUl ulgual Dl&l ldl PJ.ULEDDJJ 16 ar ld Ulhtl lllsh'bPCCu numeric PI ULCDDIIIS
applications. The ADSP-2100A contains an ALU, a multiplier/
accumulator (MAC), a barrel shifter, two data address generators and a
program sequencer. It features an off-chip Harvard architecture, where
data and program buses are available to external memories and devices.

The ADSP-2101 is a programmable single-chip microcomputer based on the
ADSP-2100A. Like the ADSP-2100A, the ADSP-2101 contains
computational units, as well as a program sequencer and dual address
generators; these elements, combined with internal data and address
busses, comprise the base architecture of the ADSP-2100 Family
microcomputers. Additionally, all family members have the following
core features:

on-chip data memory, program memory, and boot memory
one or two serial ports

a programmable timer

and enhanced interrupt capabilities.



To expand the usefulness of the ADSP-2100 Family, the base architecture
has been enhanced with a variety of memory configurations, peripheral
devices, and features for improved performance. Table 1.1 is a matrix that
identifies the functional differences between members of the ADSP-2100

Family.
Instruction
Cycle Time

Model s
ADSP-2100A 80
ADSP-2101 50
ADSP-2102 50
ADSP-2103(3 V) 77
ADSP-2105 100
ADSP-2111 50
ADSP-2115 50
ADSP-21msp50A 77
ADSP-21msp55A 77
ADSP-21msp56A 7
ADSP-2161 80
ADSP-2162(3V) 100
ADSP-2163 60
ADSP-2164(3 V) 100
ADSP-2165 60
ADSP-2166(3V) 100
ADSP-2171 30

Internal
Program
Memory

CACHE
2kx24
2k x 24
RAM/ROM
2k x 24
1k x 24
2k x 24
1k x 24
2kx24

2kx24

2kx24 &
2k x 24 ROM

al v 04 DOM
OK X 4 nUvI

8k x 24 ROM
2k x 24 ROM
2k x 24 ROM
1K X 24 RAM
12k x 24 ROM

2k x 24 ROM

2k x 24 RAM
8k x 24 ROM

Internal
Data
Memory

1KX 16
1KX 16
1KX 16
05K X 16
1KX 16
0.5K X 16
1KX 16

1KX 16

0.5K X 16

0.5K X 16

4K X 16

0.5K X 16

2KX 16

Host
Interface
Port

Introduction

Program
Memory
Boot

Table 1.1 ADSP-2100 Family Functional Differences

Serial
Ports

N

Programmable ~ On-chip

Timer

AD &D/A

External
Interrupts

(%)

1

Low Power
Modes

Pin
Count

100

80/68

80/68

80/68

100

80/68

128
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This chapter includes overviews of the ADSP-2100 family base
architecture and the three family members that exhibit the most distinct
features. These overviews include the following ADSP-2100 Family
members:

e ADSP-2100 Family Base Architecture—contains the computational units,
address generators, and program sequencer

¢ ADSP-2101-contains the base architecture, plus on-chip memory
(program, data, and boot memory), a programmable timer, and
enhanced interrupts

e ADSP-2111-contains the features of the ADSP-2101, plus a host
interface port (HIP)

e ADSP-21msp50-contains the features of the ADSP-2101, plus a host
interface port (HIP) and a voice-band analog front end

Other family members are variations on these DSPs. For example, the
ADSP-2105 is based on the ADSP-2101, but it has less on-chip memory
and only one serial port; the ADSP-2171 is similar to the ADSP-2111,
except it has functional enhancements (low-power operation and
expanded instruction set).

Because all the microcomputers of the ADSP-2100 family are code-
compatlble, the programs in this book can be executed on any DSP in the
Iamuy, aitnougn some mOQlIl(.dU()Ilb l'()r Hlt(:‘l'rupf V(:'CIUl"b, perlpnerab,
and control registers may be necessary. All the programs in this book,
however, are not designed to use the extra features and functions of some
family members.

1.21  ADSP-2100 Family Base Architecture

This section gives a broad overview of the ADSP-2100 family base
architecture (shown in Figure 1.1). Refer to the ADSP-2100 Family User’s
Manual for additional details.

The base architecture contains three full-function and independent
computational units: an arithmetic/logic unit, a multiplier/accumulator
and a barrel shifter. The computational units process 16-bit data directly
and provide for multiprecision computation.
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A program sequencer and two dedicated data address generators (used to
simultaneously access data in two locations) supply addresses to memory.
The sequencer supports single-cycle conditional branching and executes
program loops with zero overhead. Dual address generators allow the
processor to output simultaneous addresses for dual operand fetches.
Together the sequencer and data address generators allow computational
operations to execute with maximum efficiency. The ADSP-2100 family
uses an enhanced Harvard architecture in which data memory stores data,
and program memory stores instructions and data. This feature lets
ADSP-2100 family processors fetch two operands on the same instruction
cycle.
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Five internal buses support the internal components.

Program Memory Address (PMA) bus

Program Memory Data (PMD) bus

Data Memory Address (DMA) bus

Data Memory Data (DMD) bus

Result (R) bus (which interconnects the computational units)

The program memory data (PMD) bus serves primarily to transfer
instructions from program memory to the instruction register. Instructions
are fetched and loaded into the instruction register during one processor
cycle; they execute during the following cycle while the next instruction is
being fetched. The instruction register introduces a single level of
pipelining in the program flow.

The next instruction address is generated by the program sequencer
depending on the current instruction and internal processor status. This
address is placed on the program memory address (PMA) bus. The
program sequencer uses features such as conditional branching, loop
counters and zero-overhead looping to minimize program flow overhead.
The program memory address (PMA) bus is 14 bits wide, allowing direct
access to up to 16K words of instruction code and data.

The data memory address (DMA) bus is 14 bits wide allowing direct
access of up to 16K words of data. The data memory data (DMD) bus is 16
bits wide. The data memory data (DMD) bus provides a path for the
contents of any register in the processor to be transferred to any other
register, or to any data memory location, in a single cycle. The data memory
address can come from two sources: an absolute value specified in the
instruction code (direct addressing) or the output of a data address
generator (indirect addressing). Only indirect addressing is supported for
data fetches through the program memory bus.

The program memory data (PMD) bus can also be used to transfer data to
and from the computational units through direct paths or through the
PMD-DMD bus exchange unit. The PMD-DMD bus exchange unit permits
data to be passed from one bus to the other. It contains hardware to
overcome the 8-bit width discrepancy between the two buses when
necessary.

Each computational unit contains a set of dedicated input and output
registers. Computational operations generally take their operands from
input registers and load the result into an output register. The
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computational units are arranged in parallel rather than cascaded. To
avoid excessive delays when a series of different operations is performed,
the internal result (R) bus allows any of the output registers to be used
directly (without delay) as the input to another computation.

There are two independent data address generators (DAGs). As a pair,
they allow the simultaneous fetch of data stored in program and in data
memory for executing dual-operand instructions in a single cycle. One
data address generator (DAG1) can supply addresses to the data memory
only; the other (DAG2) can supply addresses to either the data memory or
the program memory. Each DAG can handle linear addressing as well as
modulo addressing for circular buffers.

With its multiple bus structure, the ADSP-2100 family architecture
supports a high degree of operational parallelism. In a single cycle, a
family processor can fetch an instruction, compute the next instruction
address, perform one or two data transfers, update one or two data
address pointers and perform a computation. Every instruction can be
executed in a single cycle.

122 ADSP-2101 Architecture

Figure 1.2 shows the architecture of the ADSP-2101 processor. In addition
to the base architecture, the ADSP-2101 has two serial ports, a
programmable timer, enhance interrupts, and internal program, data and
boot memory.
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iemory on-chip and 2K
words of 24-bit program memory on-chip. The processor can fetch an
operand from on-chip data memory, an operand from on-chip program
memory and the next instruction from on-chip program memory in a

single cycle.

This scheme is extended off-chip through a single external memory
address bus and data bus that may be used for either program or data
memory access and for booting. Consequently, the processor can access
external memory once in any cycle.

Boot circuitry provides for loading on-chip program memory
automatically after reset. Wait states are generated automatically for
interfacing to a single low-cost EPROM. Multiple programs can be
selected and loaded from the EPROM with no additional hardware.

1
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Figure 1.2 ADSP-2101 Architecture

The memory interface supports memory-mapped peripherals with
programmable wait-state generation. External devices can gain control of
buses with bus request and grant signals (BR and BG). An optional
execution mode allows the ADSP-2101 to continue running from internal
memory while the buses are granted to another master as long as an
external memory operation is not required.

The ADSP-2101 can respond to six user interrupts. There can be up to
three external interrupts, configured as edge- or level-sensitive. Internal
interrupts can be generated from the timer and the serial ports. There is
also a master RESET signal.

The two serial ports (“SPORTs”) provide a synchronous serial interface;
they interface easily and directly to a wide variety of popular serial
devices. They have hardware companding (data compression and
expansion) with both p-law and A-law available. Each port can generate
an internal programmable clock or accept an external clock.

The SPORTSs are synchronous and use framing signals to control data
flow. Each SPORT can generate its serial clock internally or use an external
clock. The framing synchronization signals may be generated internally or
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by an external device. Word lengths may vary from three to sixteen bits.
One SPORT (SPORTO0) has a multichannel capability that allows the
receiving or transmitting of arbitrary data words from a 24-word or 32-
word bitstream. The SPORT1 pins have alternate functions and can be
configured as two additional external interrupt pins and Flag Out (FO)
and Flag In (FI).

The programmable interval timer provides periodic interrupt generation.
An 8-bit prescaler register allows the timer to decrement a 16-bit count
register over a range from each cycle to every 256 cycles. An interrupt is
generated when this count register reaches zero. The count register is
automatically reloaded from a 16-bit period register, and the count
resumes immediately.

123  ADSP-2111 Architecture

Figure 1.3 shows the architecture of the ADSP-2111 processor. The ADSP-
2111 contains the same architecture of the ADSP-2101—plus a host
interface port (HIP). This section only contains a brief overview; for
detailed descriptions of the HIP and its operation, refer to the ADSP-2111
data sheet and ADSP-2100 Family User’s Manual.

The host interface port is a parallel I/O port that lets the DSP act as a
memory mapped peripheral (slave DSP) to a host computer or processor.
You can think of the host interface port as a collection of dual-ported
memory, or mailbox registers, that let the host processor communicate
with the DSP’s processor core. The host computer addresses the HIP as a
section of 8-bit or 16-bit words of memory. To the processor core, the HIP
is a group of eight data mapped registers.

The host interface port is completely asynchronous. This means that the
host computer can write data into the HIP while the ADSP-2111 is
operating at full speed.

The ADSP-2111 supports two types of booting operations. One method
boots the DSP from external memory (usually an EPROM) through the
boot memory interface. The ADSP-2100 Family User’s Manual describes the
boot memory interface in detail. In the second method, a boot program is
loaded from the host computer through the HIP. Chapter 12, Hardware
Interface includes a sample of code to load a program through the HIP.

1
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1.24  ADSP-21msp50 Architecture

Figure 1.4 shows the architecture of the ADSP-21msp50 processor The
ADSP-21msp50 contains the same core architecture of the ADSP-2101—
plus a host interface port (described in the previous section) and an analog
interface. This section only contains a brief overview; for detailed
descriptions of the analog interface and its operation, refer to the ADSP-
21msp50 data sheet and ADSP-2100 Family User’s Manual.

The ADSP-21msp50 has an analog interface that provides the following
features:

linear-coded 16-bit sigma-delta ADC
linear-coded 16-bit sigma-delta DAC
on-chip anti-aliasing and anti-imaging filters
individual interrupts for the ADC and DAC
8 kHz sampling frequency

programmable gain for DAC and ADC
on-chip voltage reference

® & o o o o o
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The analog interface is configured and operated through several memory
mapped control and data registers. The ADC and DAC I/O can be
transmitted and received through individual memory mapped registers,

or the data can be autobuffered directly into the processor’s data memory.
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Figure 1.4 ADSP-21msp50 Architecture

13 ASSEMBLY LANGUAGE OVERVIEW

The ADSP-2100 family’s assembly language uses an algebraic syntax for
ease of coding and readability. The sources and destinations of
computations and data movements are written explicitly in each assembly
statement, eliminating cryptic assembler mnemonics. Each assembly
statement, however, corresponds to a single 24-bit instruction, executable
in one cycle. Register mnemonics, listed below, are concise and easy to

remember.
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Mnemonic Definition

AX0, AX1, AY0, AY1 ALU inputs

AR ALU result

AF ALU feedback

MX0, MX1, MY0, MY1 Multiplier inputs

MRO, MR1, MR2 Multiplier result (3 parts)

MF Multiplier feedback

SI Shifter input

SE Shifter exponent

SRO, SR1 Shifter result (2 parts)

SB Shifter block (for block floating-point format)
PX PMD-DMD bus exchange

10-17 DAG index registers

MO - M7 DAG modify registers

LO-L7 DAG length registers (for circular buffers)
PC Program counter

CNTR Counter for loops

ASTAT Arithmetic status

MSTAT Mode status

SSTAT Stack status

IMASK Interrupt mask

ICNTL Interrupt control modes

RX0, RX1 Receive data registers (not on ADSP-2100A)
TX0, TX1 Transmit data registers (not on ADSP-2100A)

Instruction sets for other family members are upward-compatible
supersets of the ADSP-2100A instruction set; thus, programs written for
the ADSP-2100A can be executed on any family member with minimal
changes.

Here are some examples of the ADSP-2100 family assembly language. The
statement

MR = MR + MX1*MY1;

performs a multiply /accumulate operation. It multiplies the input values
in registers MX1 and MY1, adds that product to the current value of the
MR register (the result of the previous multiplication) and then writes the
new result to MR.
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The statement

DM (bufferl) = AXO;

writes the value of register AX0 to data memory at the location that is the
value of the variable bufferl.

14 DEVELOPMENT SYSTEM

The ADSP-2100 family is supported with a complete set of software and
hardware development tools. The ADSP-2100 Family Development
System consists of Development Software, to aid in software design, and
in-circuit emulators, like the EZ-ICE®, to facilitate the debug cycle.
Development tools, like the EZ-LAB® Development Board, are also
available to provide a hardware platform for experiments and to evaluate
processor functions. Additional development tool capabilities continue to
be added as new members of the processor family are introduced.

The Development Software includes:

¢ System Builder

This module allows the designer to specify the amount of RAM and ROM
available, the allocation of program and data memory and any memory-
mapped 1/O ports for the target hardware environment. It uses high-level
constructs to simplify this task. This specification is used by the linker,
simulators, and emulators.

e Assembler

This module assembles a user’s source code and data modules. It supports
the high-level syntax of the instruction set. To support modular code
development, the Assembler provides flexible macro processing and
“include” files. It provides a full range of diagnostics.

e Linker
The Linker links separately assembled modules. It maps the linked code

and data output to the target system hardware, as specified by the System
Builder output.

1
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¢ Simulator

This module performs an instruction-level simulated execution of ADSP-
2100 family assembly code. The interactive user interface supports full
symbolic assembly and disassembly of simulated instructions. The
Simulator fully simulates the hardware configuration described by the
System Builder module. It flags illegal operations and provides several
displays of the internal operations of the processor.

¢ PROM Splitter

This module reads the Linker output and generates PROM-programmer-
compatible files.

¢ C Compiler

The C Compiler reads ANSI C source and outputs source code ready to be
assembled. It also supports inline assembler code.

In-circuit emulators provide stand-alone, real-time, in-circuit emulation.
The emulators provide program execution with little or no degradation in
processor performance. The emulators duplicate the simulators’
interactive and symbolic user interface.

Complete information on development tools is available from your local
authorized distributor or Analog Devices sales office.

1.5 CONVENTIONS OF NOTATION

The following conventions are used throughout this book:

* Many listings begin with a comment block that summarizes the calling
parameters, the return values, the registers that are altered, and the
computation time of the routine (in terms of the routine’s parameters,
in some cases).

¢ Inlistings, all keywords are uppercase; user-defined names (such as
labels, variables, and data buffers) are lowercase. In text, keywords are
uppercase and user-defined names are lowercase italics. Note that this
convention is for readability only.
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¢ In comments, register values are indicated by “=" if the register
contains the value or by “—>" if the register points to the value in
memory.

e All numbers are decimal unless otherwise specified. In listings,
constant values are specified in binary, octal, decimal, or hexadecimal
by the prefixes B#, O#, D#, and H#, respectively.

1.6 PROGRAMS ON DISK

This book includes an IBM PC 3% inch high-density diskette containing
the routines that appear in this book. As with the printed routines, we
cannot guarantee suitability for your application.

1.7 FOR FURTHER SUPPORT

If you need applications engineering assistance with the applications in
this book, please contact:

Applications Engineering from your local Analog Devices distributor

Analog Devices, Inc.

DSP Applications Engineering

One Technology Way

Norwood, MA 02062-9106

Tel: (617) 461-3672

Fax: (617) 461-3010

e_mail: dsp_applications@analog.com

Or log into the DSP Bulletin Board System:
Tel: (617) 461-4258
300, 1200, 2400, 9600, 14400 baud, no parity, 8 bits data, 1 stop bit

1
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Modems

2.1 OVERVIEW

The International Telegraph and Telephone Consultative Committee
(CCITT), which determines protocols and standards for telephone and
telegraph equipment, has authored a number of recommendations
describing modem operation. This chapter surveys the fundamental
algorithms of the V.32 modem recommendation, which describes the
operation of a high-speed modem. Implementations of the algorithms on
the ADSP-2100 family of DSP microprocessors are shown.

A modem is an electronic device that incorporates both a modulator and a
demodulator into a single piece of signal conversion equipment.
Interfacing directly to the communication channel, modems establish
communication links between various computer systems and terminal
equipment. In most cases the communications channel is the general
switched telephone network (GSTN) or a two- or four-wire leased circuit.
The GSTN is, for the most part, a copper wire network. The bandwidth of
this channel is limited to 200 Hz to 3400 Hz.

Traditionally, a modem was implemented using analog discrete
components. Today, digital circuits centered around a high performance
digital signal processor can meet the demands of modem algorithms
without the difficulties associated with analog circuitry. A digital modem
implementation offers programmability, temperature insensitivity, ease of
design and often reduced cost when compared with analog
implementations.

2.2 V.32 MODEM DEFINITION

The V.32 recommendation describes a full duplex synchronous modem
that operates on the general switched telephone network (GSTN) as well
as point-to-point leased circuits. The V.32 modem communicates at a rate
of 9600 bits per second (with a 4800 bit per second slow down mode)
utilizing quadrature amplitude modulation (QAM). Four-bit symbols
(bauds) modulate a carrier frequency of 1800 Hz with a modulation rate of
2400 bauds per second. The modulation of 4-bit symbols at a rate of 2400
symbols per second yields the 9600 bit per second specification.

17
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There are three signal coding modes to choose from in the V.32
recommendation.

9600 bit/second 16-point QAM. Four bits per symbol are transmitted.
9600 bit/second 32-point trellis-coded QAM. Transmitted symbols
contain four information bits and an additional trellis encoded bit for
error correction.

* 4800 bit/second 4-point QAM.

The second method, which produces a redundant bit for error correction,
is the method used in the implementation described in this chapter.

Channel separation is achieved through echo cancellation. Echo cancellers
are subject to CCITT specification G.165. An ADSP-2100 family
implementation of an echo canceller is described in this chapter.

The V.32 modem transmits with a carrier frequency of 1800 +1 Hz and
must be able to operate with received carrier frequency offsets of +7 Hz.
The V.32 recommendation also specifies the transmitted spectrum.

2.2.1  Transmitter Algorithms

A block diagram of the transmitter section of the V.32 modem
implemented in this chapter is shown in Figure 2.1. The input serial bit
stream is subject to a number of algorithms prior to modulation and
transmission. Each step is described briefly below and in greater detail in
the following sections.

Scrambler. The input serial bit stream is first scrambled by a self-
synchronizing (requires no clock signal) scrambler. Scrambling takes the
input serial bit stream and produces a pseudo-random sequence. The
purpose of the scrambler is to whiten the spectrum of the transmitted
data. Without the scrambler, a long series of identical symbols could cause
the receiver to lose carrier lock. Scrambling makes the transmitted
spectrum resemble white noise, to utilize the bandwidth of the channel
more efficiently, makes carrier recovery and timing synchronization easy
and makes adaptive equalization and echo cancellation possible.

Encoders. The scrambled bit stream is divided into groups of four bits. The
first two bits of each 4-bit group are first differentially encoded and then
convolutionally encoded. This produces a 5-bit symbol in which the first
bit is a redundantly coded bit.
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Figure 2.1 Transmitter Block Diagram

Signal Mapping. The 5-bit symbols are mapped into the signal space
(defined in the V.32 recommendation) for modulation. The signal space
mapping produces two coordinates, one for the real part of the QAM
modulator and one for the imaginary part.

Pulse Shape Filters. The pulse shape filter is based on the impulse response
of a raised cosine function. Used prior to modulation, these filters
attenuate frequencies above the Nyquist frequency that are generated in
the signal mapping process. The filters are designed to have zero crossings
at the appropriate frequencies to cancel intersymbol interference.

Modulation. The modulation for all coding schemes in the V.32 modem
recommendation is quadrature amplitude modulation (QAM). The carrier
frequency is 1800 Hz and the modulation rate is 2400 symbols/second.

After modulation, the samples are converted to an analog signal. The
analog output is filtered through a smoothing filter.

19
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22.2  Receiver Algorithms

A block diagram of the receiver section of the V.32 modem described in
this chapter is shown in Figure 2.2. Each step is described briefly below
and in greater detail in the following sections.
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Figure 2.2 Receiver Block Diagram

Input Filter. The received analog signal is oversampled by a factor of 4 at
9600 samples per second. The sampled input is filtered with a raised
cosine pulse shape filter. The output is then decimated by a factor of 2.

Demodulation. Multiplication by e7@™CnT/2) demodulates the signal. QAM
demodulation techniques are described in this chapter.

Adaptive Equalizer. An adaptive equalizer compensates for distortions
introduced in the communications channel. A 64-tap fractionally spaced
equalizer provides the performance necessary for V.32 applications. The
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equalizer also feeds a timing loop which adjusts the 4X sampling input
and the 2X sampling output of the input filter. An ADSP-2100 family
implementation of an adaptive equalizer is described in this chapter.

Viterbi Decoder. The decoder takes as input a demodulated, pulse shaped,
equalized signal. The Viterbi algorithm is employed as a decoder in order
to determine the appropriate signal constellation point received. This
algorithm is a soft-decision maximum likelihood sequence decoder. By
keeping a past history of 20 or so baud, the decoder can determine the
signal point received in noisy conditions. The phase detector and delay
adjust the feedback from the Viterbi decoder to the equalizer, which is
constantly adapting in response to the received data.

Differential Decoder and Descrambler. Once the amplitude and phase of the
signal point received is known, the corresponding symbol must be back-
mapped to decode the encoded bits. The decoded 4-bit symbol is then

descrambled utilizing the same generating polynomials as the scrambler.

223  Scrambler

The V.32 modem recommendation calls for the use of a scrambler in the
transmit section of the modem and descrambler in the receive section of
the modem. The scrambler and descrambler are based on simple
polynomials. Each transmission direction uses a different scrambler, i.e., a
different generating polynomial, as specified in the V.32 specification. The
calling or call mode modem uses the following generating polynomial
(GPC):

GPC =1 +x8 + x®

where x is the input sample and the exponent on x indicates a time delay,
e. g., X2 is the twenty-third previous sample. The answering or answer
mode modem uses a similar scrambler with the following generating
polynomial (GPA):

GPA=1+x5+x2

The additions are modulus 2 additions, that is, the bitwise exclusive-OR of
the data values. The transmitting modem scrambles the input data
sequence by dividing the message sequence by the generating polynomial.
The receiving modem multiplies the scrambled sequence by the same
polynomial to descramble and recover the original message sequence.

21
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These polynomials can be thought of as digital filters. The scrambler has
an all pole transfer function and the descrambler has an all zero transfer
function.

The scrambler output is pseudo-random. For a repetitive input signal, the
scrambler output is also repetitive with a maximum period of 21
samples, where k is the order of the generating polynomial (23 in the case
of the V.32 scrambler). In order to maximize the period of the pseudo-
random output patterns, the specified GPC and GPA are irreducible and
primitive.

A block diagram of the call mode scrambler is shown in Figure 2.3; x,_is
the serial bit input stream and D, is the scrambled data bit stream. Each
delay block corresponds to a serial port cycle and each addition block is an
exclusive OR operation.

Dg 4

< Z -1

Xin

Figure 2.3 Call Mode Scrambler

The answer mode scrambler block diagram (Figure 2.4) is similar. The
fifth delay line sample, x5, is used in the answer mode scrambler rather
than the eighteenth delay line value as in the call mode scrambler.

224  Descrambling

The descrambler is implemented using a delay line, similar to the
scrambler. The descrambler is the last functional block that the data passes
through in the receiver. The data that is input to the descrambler is in
effect multiplied by the appropriate generating polynomial. This
multiplication performs the inverse operation of the scrambler.
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Figure 2.4 Answer Mode Scrambler

There are two versions of the descrambler, one for call mode and one for
answer mode. Block diagrams for the call mode and answer mode
descramblers are shown in Figures 2.5 and 2.6.
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Figure 2.5 Call Mode Descrambler

X out

Figure 2.6 Answer Mode Descrambler
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225  ADSP-2100 Family Implementation

Fundamentally, the implementation of the generating polynomials for
scrambling and descrambling is the management of a delay line. The
scrambler generates its output from the current input bit and two delayed
outputs. The call mode uses the eighteenth and twenty-third previous
outputs, while the answer mode uses the fifth and twenty-third previous
outputs.

The ADSP-2100 family processors have two key features to facilitate
efficient delay line management. First, each of two independent data
address generators (DAGs) has four independent data pointers. An index
register pointer can be programmed to handle each of the delay values
and can be separately updated. Second, the DAGs support circular buffers
into which delay lines are easily mapped.

In either scrambler, the twenty-third value is the oldest value, and once
used is no longer needed. Thus the newest value can be written over it, so
the circular buffer always contains only the 23 most recent values. Figure
2.7 illustrates the circular buffer implementation and shows the
appropriate pointers.

-1 -1
[ ] [ ]
Ds X Ds X

Figure 2.7 Circular Buffer Implementation For Scrambler
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The value x° is the current input value. This value is put into an ALU
register. The delayed value, Dg ® x, is read from the circular buffer using
the address supplied by a pointer (represented in the above diagram with
an arrow). Once the location is read, the pointer is decremented to the next
location in the buffer, shown with the light arrow. The oldest value is then
written to an ALU register; the pointer’s address is not yet modified. The
necessary XOR operations are performed and the result is output, as well
as written to the last buffer location. This pointer is now decremented to
the next value, now the oldest.

This process is repeated with each new input bit. When a pointer comes to
the first location in the circular buffer and is decremented, it wraps
around to the last location in the circular buffer. Eighteen and twenty-
three unit delays are maintained in the circular buffer, with no need to
move data values, just pointer addresses.

The answer mode scrambler works similarly, except with a delay of five
units instead of eighteen units. The descrambler, for both call and answer
modes, also uses the same basic structure, but with a different flow of data
to accomplish the inverse operation.

2.2.6  Scrambler/Descrambler Programs

The code in Listings 2.1 and 2.2 implements the V.32 scrambler (call mode)
on the ADSP-2100 family processors. There are two modules, a main
module and a scrambler module. The main module sets up interrupts,
initializes the appropriate registers for interrupt control, initializes index
registers for maintenance of the circular buffer, clears the circular buffer to
zero and waits in an infinite loop for an interrupt. The only interrupt
active in this program is IRQ3. This is the highest priority interrupt, and in
this case it corresponds to a sampling interrupt. When a sample is ready to
be scrambled, this interrupt is asserted.

The second program module is the actual scrambling routine. Included as
part of this module is the bits subroutine, which takes 16-bit data values
and strips off bits one at a time. The output of this subroutine is a string of
simulated serial data values in the most significant bit position of 16-bit
words. That is, a 16-bit word is input and 16 words (each of whose value
is either H#8000 or H#0000) are output. These simulated serial bits are
then passed to the scrambler. The scrambler output is in the AR register at
the end of each pass and is written to the data memory location dac.

The descrambler program, in Listing 2.3, has the same fundamental
structure as the scrambler program, performing the inverse operation of
the scrambler.
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.MODULE/RAM/ABS=0 cms_main_routine;

{ This module initializes registers, clears a buffer}

{ of length 23 for the call mode scrambler, sets IMASK}

{ and waits in a loop for sampling interrupt}

{ CALLS: initial, clear_buffer}

{ INTERRUPTS: only interrupt 3 active}

.CONST no_bits_per_word=16;

.VAR/DM/RAM/CIRC buffer([23], input_buffer [no_bits_per_word];
.GLOBAL input_buffer;

.PORT cntl_port;

.EXTERNAL start_scramble;

{interrupt jump table}
RTI; {only INT3 is used}
RTI;
RTI;
JUMP start_scramble; {INT3 8 kHz from codec}

{main routine}
CALL initial;
CALL clear_buffer;

IMASK=H#8; {enable interrupt 3}
mainloop: JUMP mainloop; {loop until interrupted}
{——INIT SUBROUTINE—M——}

{One time initialization subroutine, sets up registers}

initial: IMASK=B#0000; {disable interrupts}

ICNTL=H#F; {edge sensitive interrupts}
SI=0;
DM(cntl_port)=SI; {load codec control register}
LO0=%buffer; {length registers}
Ll=%buffer; {circular buffer length 23}
L2=%buffer;
L3=0; {no other index circ buffer}
L4=0;
L5=0;
L6=0;
L7=0;

{index registers}
I0="buffer; {ds(n-5)}
Il="buffer + 17; {ds(n-18)}
I2="buffer + 22; {ds(n-23)}
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I3=0000;
I4="input_buffer + 15;

M0=0; {modify registers}
Ml=-1;

M2=1;

M4=-1;

M5=1;

SE=4; {SE for nibble pack}
RTS;

{———CLEAR BUFFER SUBROUTINE——}
{initialize scramble buffer to zero}

clear_buffer: CNTR=%buffer;
DO clear UNTIL CE;
clear: DM(IO,M1)=0;
RTS;

.ENDMOD;

Listing 2.1 Call Mode Scrambler Main Routine

2

27



28

Modems

.MODULE call_mode_scrambler;

{ This module performs V.32 call mode scrambling}

{ The generating polynomial is: xin+y (n-18)+y(n-23)}

{ CALLS: bits}

.EXTERNAL input_buffer;

.CONST no_bits_per_word=16;

. PORT codec;

. PORT dac;

.ENTRY start_scramble;

start_scramble: AY0=DM (codec) ; {read from port}
CALL bits; {show as serial stream}

CNTR=no_bits_per_word; {scramble 16 times}
{once for every bit of input}

DO scrambl UNTIL CE;

AY0=DM(I4,M5);

AX0=DM(I1,M1); {d(n-18)}

AY1=DM(I2,M0); {d(n-23)}

AR=AX0 XOR AY1l; {d(n-18) + d(n-23)}

AR=AR XOR AY0; {d(n) + d(n-18) + d(n-23)}

DM(I2,M1)=AR; {store scramble in buffer}
{write new value over oldest}
DM (dac) =AR; {out to dac}

MODIFY (I4,M4); {reset pointer to last buffer}
{value for next input word}
scrambl: NOP;

RTI;

BITS SUBROUTINE—/—m M —}
takes output from u_expand (1l6-bit word) and separates out }
the bits; stores as MSB in a 16-word buffer ‘input_buffer’}
The most significant bit of the input word is at the top of }
the buffer}

i e ]

bits: AX0=AYO0; {expanded output into ALU}
SE=15;
CNTR=no_bits_per_word;
AY0=H#8000;
DO bit_loop UNTIL CE;
AR=AX0;
SR=LSHIFT AR (LO); ({shift so next bit is}

{MSB in reg SRO}
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AR=ARQ AND AYO; {mask out all except MS}
DM(I4,M4)=AR;
AY1=SE; {decrement SE for next}
AR=AY1-1;
bit_loop: SE=AR;

I4="input_buffer;

SE=4;

RTS;

.ENDMOD;

Listing 2.2 Call Mode Scrambler Scrambling Routine

29



30

Modems

.MODULE/RAM/ABS=0 main_routine;

{ Descrambling Routine }
{ Call Mode Functions implemented:}
{ d(n)=di(n)+d(n-18)+d(n-23)}
{ System file: fullpm.sys}
{ CALLS: initial, clear_buffer, output}
.VAR/DM/RAM/CIRC buffer([23];
. PORT codec;
.PORT dac;
.PORT cntl_port;
RTI; RTI; RTI; {int0-2 not used}
JUMP start_descramble; {INT3 8 kHz from codec}
CALL initial;
CALL clear_buffer;
IMASK=h#8; {enable interrupts}
mainloop: JUMP mainloop; {loop until interrupted}
{———— descramble subroutine }

{addressing circular buffer with 2 pointers for modem scrambler}

start_descramble:

AY0=DM (codec) ;
AX0=DM(I1,M1);
AY1=DM(I2,M0) ;
AR=AX0 XOR AY1;
AR=AR XOR AYO;
DM(I2,M1)=AY0;

CALL output;
AR=0;
RTI;

{————— initialize subroutine
{initialize registers}

initial:

IMASK=B#0000;
ICNTL=H#F;

SI=0;
DM(cntl_port)=SI;
LO=%buffer;
Ll=%buffer;

{read from port}

{d(n-18)}

{d(n-23)}

{d(n-18)+d(n-23)}
{d(n)+d(n-18)+d(n-23)}
{store scramble in buffer}
{input stored... not output}

{clear AR for next time}

{disable interrupts}
{edge level interrupts}

{load codec control reg}
{circular buffer length 23}
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L2=%buffer;
L3=0;

L4=0;

L5=0;

L6=0;

L7=0;
I0="buffer;
Il="buffer + 17;
I2="buffer + 22;
MO=0;

Ml=-1;

SR0=0;

SR1=0;

SE=16;

RTS;

{—— clear buffer subroutine —m8 —}
{initialize buffer to zero}

clear_buffer: CNTR=%buffer;
DO clear UNTIL CE;
clear: DM(IO0,M1)=0;
RTS;

{ output routine packs serial into 16 bit words }
output: SR=SR OR LSHIFT AR(LO);

AYO0=SE;

AR=AYO0 -1;

SE=AR;

IF EQ CALL out;

RTS;

out: DM (dac)=SR1;
SR0=0;
SR1=0;
SE=16;
RTS;

. ENDMOD;

Listing 2.3 Call Mode Descrambler Routine
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2.2.7 Raised Cosine Filter

For the V.32 modem recommendation, 5-bit symbols are modulated by a
carrier of 1800 Hz. This modulation is performed digitally. Coupled with
the modulator and the demodulator are pulse shaping low pass filters.
These digital filters eliminate intersymbol interference (ISI) on the
bandlimited GSTN.

A brief development of the theory of pulse shaping filters follows. For a
more complete theoretical discussion of pulse shaping filters, see
“References” at the end of this chapter: Bingham, Lee and Messerschmitt,
Proakis.

Low pass transmitted signals can be shown to have the form

oo

z I g(t-nT)

n=0

where I _is the discrete code word and g(t) is a pulse. For the bandlimited
channel, we desire a transmitted pulse g(t) that produces no ISI. If the
channel is ideally bandlimited, then an ideally bandlimited pulse can be
used. In the frequency domain, this ideally bandlimited pulse can be
described as:

G(f) = Tforf<1/2T
Oforf>1/2T

This spectrum has an ideal rectangular shape.
In the time domain, this ideal spectrum shape is the sinc function:
g(t) = sin(nt/T)/(nt/T)

The nulls (zero values of the pulse function) occur at multiples of T, the
baud rate. Because of the placement of the nulls, there is no additive
interference due to previous symbols; there is no ISI.

The ideal pulse shaping filter is not practical to implement. The ideally
bandlimited frequency response has a corresponding infinite impulse
response. Although the impulse response has a zero value at all multiples
of T, any mistiming in the modem produces an infinite series of ISI terms.
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A pulse shaping filter that is practical and widely used in digital
communications is the raised cosine pulse shaping filter. The raised cosine
pulse shaping filter is realizable, unlike the ideal pulse shaping filter. The
raised cosine function has tails that decay proportional to 1/}, whereas
the ideal pulse tails off proportional to 1/t. Mistiming errors in sampling
in the modem therefore have a much less dramatic effect on the amount of
ISI in the raised cosine pulse filter.

A generic formula for the impulse response of the raised cosine filter, p(t),
is shown below. T is the symbol rate in Hz, ¢ is the sampling rate in Hz,
and o is the rolloff factor.

sin (ntt/T) ® cos (omt/T)
p(t) = —

(mt/T) o (1 - (2amt/T)?

The rolloff factor, o, represents the amount of excess bandwidth required.
A raised cosine with a rolloff factor of 0 needs the least excess bandwidth.
As o varies from 0 to 1, the amount of excess bandwidth required
increases from 0 to 100%. For purposes of this implementation, a common
rolloff factor of 0.25 is used. For the V.32 modem, the symbol rate, T, is
specified at 2400 symbols per second. The sampling rate, t, is usually 9600
Hz. The frequency response of the raised cosine pulse shaping filter with
these parameter values is shown in Figure 2.8.

The puise shaping filter usuaily spans four baud intervais. For a sampling
rate of 9600 Hz and a symbol rate of 2400 Hz, a 17-tap FIR filter can be
used.

22.8 ADSP-2100 Family Implementation

The raised cosine pulse shaping filter can be implemented in the modem
as a simple FIR filter. Implementation of FIR filters on the ADSP-2100
family is straightforward. The dual DAGs with circular buffering and the
on-chip Harvard architecture allows for efficient realization of FIR filter
structures. A complete description of FIR filters as well as other fixed-
coefficient filters can be found in Digital Signal Processing Applications
Using the ADSP-2100 Family, Chapter 5 (see “Literature” at the beginning
of this book).

Filter coefficients are arrived at using the formula above, generated with a
C program. The coefficients are scaled to provide a filter with 0 dB gain.

2
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Impulse response

0.8
0.6
04

0.2

Figure 2.8 Raised Cosine Pulse Shaping Filter, a=0.25

The coefficients represent a rolloff factor of 0.25, and the generated
impulse response spans four baud intervals.

Hz carrier). Samples are processed at the baud rate (2400 baud) and are
interpolated, zero-filled, to provide filter input at a rate of 9600 Hz.
Samples are processed in quadrature. Figure 2.9 shows the relationship of
the filter to the digital modulator and the data rates.

Listing 2.4 contains the ADSP-2100 family code for implementation of the
raised cosine filter. The coefficients can be found in the data file coef.dat.
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9600 Hz
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Figure 2.9 Modem Transmitter
.MODULE/boot=0 fir_sub;
{
Pulse Shape filter routine for V.32
ICASSP DEMO
Rev History 2/8/90 take APP VOL I FIR routine

adapt for V.32

.ENTRY pulse_shape;

.CONST PSF_length=89;
.EXTERNAL Real_PSF_delay_line,
. EXTERNAL real_PSF_iO0,

.VAR/DM psf_save_I0;

.VAR/DM psf_save_LO;

. VAR/DM psf_save_I4;

.VAR/DM psf_save_L4;

. VAR/DM test_psfl;

.VAR/DM test_psf2;

Imag_PSF_delay_line, Pulse_Shape_Coeff;
imag_PSF_1i0;

(listing continues on next page)
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pulse_shape: DM (psf_save_I0)=I0; DM(psf_save_LO0)=LO0; {save I0,L0,I4,L4}
DM (psf_save_I4)=I4; DM(psf_save_L4)=L4;

I0=DM(real_PSF_i0);
I4="Pulse_Shape_Coeff;
LO=psf_length; L4=psf_length;

{—— Do real part of the filter. ax0 contains the x value
from the signal map module.}

DM (IO0,M2)=AX0; {dump new vals into delay line}
CNTR=PSF_Length-1;
MR=0, MX0=DM(IO,M2), MYO=PM(I4,M5);
Sop: MR=MR+MX0*MYO (SS), MX0=DM(IO,M2), MYO=PM(I4,M5);
IF NOT CE JUMP sop;
MR=MR+MX0*MYQ (RND) ;
IF MV SAT MR;
AXQ0=MR1; {filtered X in ax0}
DM (real_PSF_1i0)=I0;

{—— Do the imaginary part of the Pulse Shape filter. axl contains
the imaginary part of the point from the signal map module. }

I0=DM(imag_PSF_i0) ;
DM(IO,M2)=AX1; {dump new vals into delay line}
CNTR=PSF_Length-1;

MR=0, MX0=DM(IO,M2), MY0=PM(I4,M5);
imag_sop: MR=MR+MX0*MY(Q (SS), MXO0=DM(IQ,M2), MYO=PM(I4,6 M5);
IF NOT CE JUMP imag_sop;
MR=MR+MX0*MYO0 (RND) ;
IF MV SAT MR;
AX1=MR1; {filtered Y in axl}

DM (imag_PSF_1i0) = IO0;

I0=DM(psf_save_I0); LO=DM(psf_save_LO) ;
I4=DM(psf_save_I4); L4=DM(psf_save_L4);

RTS;

Listing 2.4 Raised Cosine Filter
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229  Trellis Encoding

The GSTN was intended for voiceband transmission and is bandlimited
200 Hz to 3400 Hz. Data rates in excess of the upper band limit can be
realized only by the transmission of multiple bits per symbol interval.
Data rates of 9.6 Kbits per second can be achieved on unconditioned
circuits and data rates of up to 16.8 Kbits per second can be realized on
conditioned leased lines using the technique known as trellis coded
modulation (TCM).

The V.32 modem recommendation specifies trellis encoding as an option.
Four-bit symbols are encoded into 5-bit symbols that are made up of four
information bits and a redundant bit. These 5-bit symbols are used with a
32 carrier state QAM modulator. A 2400 baud rate is used and 9600
information bits per second are transmitted. A trellis encoded scheme
offers much better performance than a non-encoded scheme. It results in a
much higher immunity to noise for a given error rate and can reduce the
block error rate by three orders of magnitude for a given signal-to-noise
ratio.

There are two fundamental types of codes used in channel encoding.
Linear block codes include Hamming codes, BCH (Bose-Chadhuri-
Hocquenghem) codes, Reed-Solomon codes, Galay codes and many
others. The convolutional code, which is specified for V.32 modems can be
implemented using a shift register and can be described using a diagram
called a trellis diagram.

Suppose we can achieve a certain P, (probability of error) in an uncoded
system operating on a bandlimited channel. We can attempt to improve
system performance by coding. If we add a single redundant bit to a
binary symbol with k bits, we increase the number of waveforms that the
modulator must produce from 2* to 2!, An increase in alphabet size on
the same bandwidth requires a 3 dB increase in the signal to noise ratio to
achieve the same Pe. That is, coding alone decreases the performance of
the system.

Trellis coded modulation employs signal set partitioning in addition to
redundant coding in order to increase the system performance. In the case
of the V.32 modem, there are 32 modulator states. Of the four input bits to
the encoder, only two are encoded. Two bits pass through uncoded and
two bits are encoded into three output bits. The three bits provide a
mechanism for dividing the 32 modulator states into 8 subsets of 4
modulator carrier states. The coded bits identify the subset of the 32

2
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modulator states and the uncoded bits select a point within the subset.
Figure 2.10 shows the input and output bits of the trellis encoder. Bits Q1
through Q4 are the input bits. Bits Q3 and Q4 pass through the encoder
unchanged. Bits Q1 and Q2 are encoded to give Y1, Y2 and the redundant
error correcting bit YO. Bits YO, Y1, Y2 identify the subset while the bits Q3
and Q4 identify the point within the subset.

E
Input g Output
> [0 >
D
a4 [a3 a2 |a1 - a4 [a3[y2 [v1 [vo
Input Bits Output Bits

Figure 2.10 Encoder Block Diagram

The signal set for the V.32 modem (and other TCM schemes) has been
designed so that there is a large distance between the members of each
subset. The 32-state signal constellation for the V.32 modem is shown in
Figure 2.11. Bits are ordered on this diagram left to right, most significant
to least significant: YO Y1 Y2 Q3 Q4. The signal space mapping for the
redundant coding is from Figure 3/V.32 of the V.32 recommendation.

The signal set is located on a quadratic grid known as a Z, lattice and the
signal set type is known as 32 CROSS. In order to transmit m bits per
signalling interval, 2™*! signals are needed. The coding gain (performance
of the coded signals versus uncoded signals) is approximately 4 dB for
any m. The closest distance between any two points on the signal set is A,
The closest distance between any two points in a subset (i.e., points that
have the same Y0, Y1 and Y2 bits) is V8 A, for the 32 CROSS signal set.

All bit patterns that begin with the same three bits are spread out on the
signal constellation. This signal set partitioning along with the redundant
coding are the fundamentals of TCM.
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Figure 2.11 V.32 Signal Constellation
2.2.10 ADSP-2100 Family Implementation

Trellis encoding for the V.32 modem consists of two encoding operations:
a differential encoder, implemented as a lookup table and a convolutional
encoder, performed using a shift register and Boolean logic. Together,
these two encoders generate a 5-bit symbol from a 4-bit input word.

The serial input bits to the encoder are Q1, Q2, Q3 and Q4 (Q1 first, Q4
last). Three of the output bits are Y0, Y1 and Y2, and the other two output
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bits are Q3 and Q4, unchanged from the input. Y1 and Y2 are generated in
the differential encoder. YO, the redundant bit for error correction, is
generated in the convolutional encoder.

The differential encoder takes as input the first two bits, Q1 and Q2, and
produces two output bits, Y1 and Y2. Previous output bits, Y1(n-1) and
Y2(n—1) are also used in the differential encoder. The encoder is easily
implemented on the ADSP-2100 family as a lookup table. The input bits
and the previous output bits are combined to a 4-bit value that serves as a
pointer into the lookup table. For example, assume that the current input
bits are Q1=1, Q2=0, Y1(n—1)=0 and Y2(n-1)=1, for a 4-bit value of 1001.
This corresponds to the 1001 (ninth) entry in the lookup table, from which
the current Y1 and Y2 outputs are read. Table 2.1 shows the lookup table
for differential encoding.

Inputs Previous Outputs Outputs
Q1 Q2 Yin-1) Y2@-1) Y1 Y2
0 0 0 0 0 0
0 0 0 1 0 1
0 0 1 0 1 0
0 0 1 1 1 1
0 1 0 0 0 1
0 1 0 1 0 0
0 1 1 0 1 1
0 1 1 1 1 0
1 0 0 0 1 0
1 0 0 1 1 1
1 0 1 0 0 1
1 0 1 1 0 0
1 1 0 0 1 1
1 1 0 1 1 0
1 1 1 0 0 0
1 1 1 1 0 1

Table 2.1 Differential Encoder Lookup Table
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The convolutional encoder (Figure 2.12) uses a shift register structure to
examine the four incoming bits (the output of the differential encoder) and
build a 5-bit symbol. The five output bits of the convolutional encoder
consist of the four input bits plus an additional redundantly coded fifth
bit. This additional bit increases the complexity of the signal set, but limits
the number of possible transitions between bit patterns. For any given 5-
bit convolutionally encoded word, only half of the signal states can follow.
In other words, the process of convolutional encoding prohibits
transitions from any particular signal state to only half of the possibilities.
This property is exploited in the Viterbi decoder in the receiver.

input bits output bits
MS LS MS Ls
4 4 T

l 1

#1 #2 #3

Delay Delay ) Delay
’—" Element Element + Element \g

l MSB (s

Figure 2.12 Convolutional Encoder Block Diagram

Listing 2.5 contains a ADSP-2100 family subroutine that provides both the
differential encoder and the convolutional encoder. The input is assumed
to be a single bit residing in the most significant bit position of a 16-bit
word. Listing 2.6 shows the convolutional encoder routine that is called by
the program in Listing 2.5, and Listing 2.7 contains the routine that
performs signal mapping on the encoded data.

2

41



42

Modems

.MODULE/RAM

.VAR/DM/RAM
.VAR/DM/RAM
.VAR/DM/RAM
.VAR/DM/RAM
.VAR/DM/RAM
.VAR/DM/RAM
.VAR/DM/RAM
.VAR/DM/RAM
.VAR/DM/RAM
JINIT
.ENTRY

. PORT

. PORT
.GLOBAL

trellis;

t_table[1l6];

last_ys:

bit_count;

diff_out;

delay_val_1;

delay_val_2;

delay_val_3;

Y1l;

Y2;

t_table: 0,1,2,3,1,0,3,2,2,3,1,0,3,2,0,1;
trellis_encode;

dac;

adc;

t_table, bit_count, last_ys;

{—bit count is intially 4—}

trellis_encode:

Q1Q2_pack:

packed:

SE=DM (bit_count) ;
SI=DM(adc) ; {take in new 8000 or 0000}

SR=SR OR LSHIFT SI (LO); {count up 4 bits,}
AY0=SE; {shift into SR register}
AR=AY0 -1;

SE=AR;

DM (bit_coun {store decremented count}

4
)
2]
D
4
3
-
I
o
0~
an
w0

AX0=SR1; {stored as 4 bits}
AX1=4; {Q1 Q2 Q3 Q4}

DM (bit_count)=AX1;

SR0=0;

SR1=0;

CALL d_encode;

RTI;
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{ ENCODE }
{input: AX0 -> 0 0 0 X where X -> bits 0 0 0 0 Q1Q2Q304}

d_encode: I3="t_table;
AYO=h#000C; {mask to keep Q1 Q2}
AR=AX0 AND AYO0;
AY1=DM(last_ys); {last output Y1 Y2}
AR=AR XOR AY1l; {AR is Q1 Q2 Y1 Y2}
M3=AR; {address in lookup}
MODIFY (I3,M3); {for new Y1 Y2}

SI=DM(I3,MO0);

DM(last_ys)=SI; {AY0 ->encoded Y1 Y2}

AY1=3;

AF=AX0 AND AY1l; {keep Q3 Q4}

SR=LSHIFT SI BY 2(LO);

AR=SRO+AF; {AR ->Y1 Y2 Q3 Q4}

DM (diff_out)=AR; {store output of diff encode}
DM (dac) =AR;

CALL c_encode; {call convolutional encode}
RTS;

.ENDMOD;

Listing 2.5 Trellis Encoder Program
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.MODULE/RAM conv_encode;

{ Trellis Encoder for V.32 Modem
Implements convolutional encoder

Input: Four bit symbols, output of the differential encoder

Output: Five bit symbol in the LSB positions}

.VAR/DM/RAM diff_out; {differential encode output}
.VAR/DM/RAM conv_out; {convolutional encode output}
.VAR/DM/RAM packed_4_bits; {Q1Q2Q3Q4 as 4 LSBs}
.VAR/DM/RAM delay_val_1; {conv. enc delay element}
.VAR/DM/RAM delay_val_2; {conv. enc delay element}
.VAR/DM/RAM delay_val_3; {conv. enc delay element}
.VAR/DM/RAM intermed_1;

.VAR/DM/RAM intermed_2;

.VAR/DM/RAM YO0; {output bit YO0}

. VAR/DM/RAM Y1; {output bit Y1}

.VAR/DM/RAM Y2; {output bit Y2}

.GLOBAL conv_out;

.GLOBAL delay_val_1, delay_val_2, delay_val_3;

.GLOBAL intermed_1, intermed_2, packed_4_bits;

. ENTRY c_encode;

.EXTERNAL sig_map, dac;

{———— CONVOLUTIONAL ENCODE—7m"——}

{Input is Y1Y2Q3Q4 located in “diff_out” 4 LSBs}
{Output is 3 encoded bits in data mem locations Y0 Y1 Y2}
{calls “pack_up_5_bits” for output to dac}

c_encode: SR0=0; {clear shift result}
SR1=0;
SI=DM(diff_out); {get input from diff encoder}
SE=-3;
SR=LSHIFT SI BY -3(HI); {put Y1l in LSB position}
AY0=1;
AR=SR1 AND AYO; {separate Y1}
DM (Y1) =AR;
AX0=AR;

SR=LSHIFT SI BY -2(HI);
AR=SR1 AND AYO;
DM(Y2)=AR;

AY0=AR;

{separate Y2 and store}



AR=AX0 XOR AYO;
AY1=DM (delay_val_3);
AR=AR XOR AY1;
DM(intermed_1)=AR;

AX0=DM(delay_val_1);
AR=AX0 XOR AYO;
DM (intermed_2) =AR;

AY0=DM (delay_val_2);
DM (delay_val_3)=AYO0;
AR=AR AND AYO;

AY1=DM(intermed_1) ;
AR=AR XOR AY1;
DM(delay_val_1)=AR;

AX1=DM(Y1);

AR=AX1 AND AYO;
AYO=DM (intermed_2) ;
AR=AR XOR AYO;

DM (delay_val_2)=AR;
DM(YO0)=AR;

CALL pack_up_5_bits;
RTS;

{————— OUTPUT FORMATTER

Modems

{op #1}

{op #2}
{delay val 1 XOR Y2 op #5}

{update delay val 3}
{and_1}

{update delay_val_1}

{and_2}

{update delay val 2}

}

{Packs up convolutional bits as 5 LSBs Y0 Y1 Y2 Q3 Q4}

{Outputs to DAC}

SRO=0;
SR1=0;

pack_up_5_bits:

SR1=DM(diff_out) ;
SI=DM(YO) ;

SR=SR OR LSHIFT SI

DM (conv_out)=SR1;
DM (dac)=SR1;

SRO0=0;
SR1=0;

CALL sig_map;
RTS;

. ENDMOD;
Listing 2.6 Convolutional Encoder Routine

{pack up bits as YOY1Y2Q3Q4}
{clear SR}

BY 4 (HI);
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.MODULE signal_map;

{ This module takes the output of the convolutional encoder,
that is, a five bit code residing in the LSBs of the data
memory location “conv_out”, and looks up the x and y coordinates
as defined by the CCITT spec for the V.32 modem.

The coordinates are given in the CCITT spec as whole integers.
They are represented in a 16-bit fixed format as follows:

integer hexadecimal
0 0000
1 2000
2 4000
3 6000
4 7FFF
-1 E000
-2 c000
-3 A000
-4 8000

Registers used:

}

. VAR/DM x_table[32];
.VAR/DM y_table[32];
JINIT x_table: H#8000, H#0000, H#0000, H#7FFF, H#7FFF,

H#0000, H#0000, H#8000, H#C000, H£C000, H#4000,
H#4000, H#4000, H#4000, H#C000, H#C000, H#A000,
H#2000, H#A000, H#2000, H#6000, H#E000, H#6000,
H#E000, H#2000, H#A000, H#2000, H#2000, H#E000,

H#6000, H#E000, H#EO0O0O;

JINIT y_table: H#2000, H#A000, H#2000, H#2000, H#E000,
H#6000, H#E000, H#EO0O, H#6000, H#E000, H#6000,
H#E000, H#A000, H#2000, H#A000, H#2000, H#C000,
H#C000, H#4000, H#4000, H#4000, H#4000, H#C000,
H#C000, H#7FFF, H#0000, H#0000, H#8000, H#8000,
H#0000, H#0000, H#7FFF;
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.EXTERNAL conv_out, dac;
.ENTRY sig_map;

sig_map: Il="x_table;
I2="y_table;

M0=0;

M1=DM (conv_out) ;
MODIFY (I1,M1);
MODIFY (I2,M1);

AX0=DM(I1,M0); {x value in ax0}
AX1=DM(I2,MO0); {y value in ax1}

DM (dac) =ax0;
DM (dac) =axl;

RTS;
.ENDMOD;

Listing 2.7 Signal Mapping Routine

2.2.11  Viterbi Decoding

The V.32 recommendation specifies a trellis or convolutional encoding of
data before transmission. The most common technique used for decoding
received data is Viterbi decoding. The Viterbi algorithm is a general
purpose technique for making an error-corrected decision. Viterbi
decoding provides a certain degree of error correction by determining
from the received bit pattern the value that was the most likely to have
been transmitted. The Viterbi algorithm can be used for many applications
where error correcting is required. Its application in the V.32 modem is
similar to that used in other digital data communication schemes, such as
digital telephones.

In order for the Viterbi algorithm to decode received data properly, the
model for encoding the transmitted data must be known. In trellis
encoding, it is assumed that the three delay elements of the encoder
contain zeros initially. At each time period, a new 2-bit input is presented.
The contents of the delay elements are changed accordingly and a 3-bit
output is produced. If the three delay elements are treated as a 3-bit word,
where delay element 1 is the most significant bit and delay element 3 is
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the least significant bit, then the state of the delay elements collectively
can be represented by that 3-bit value.

It is possible to derive a state diagram or table from this specification. The
three delay elements in the encoder are labelled from left to right as
element 1, 2 and 3, respectively, in Figure 2.12. At any moment, each delay
element has stored in it a 1 or a 0. The possible combinations of bits in the
three delay elements or the possible states is eight. The state table shows
the eight possible states of these three storage elements. It also shows that
for any 2-bit input to the encoder, the three delay elements go to some
new state and the encoder also produces an output. The state table
showing the state transitions with the encoder inputs and outputs is

shown in Table 2.2.

Beginning End Beginning End
State Input  Output State State Input  Output State
000 00 000 000 100 00 000 010
000 01 101 011 100 01 101 001
000 10 010 010 100 10 010 000
000 11 111 001 100 11 111 011
001 00 000 100 101 00 000 110
001 01 101 101 101 01 101 111
001 10 110 111 101 10 110 101
001 11 011 110 101 11 011 100
010 00 100 001 110 00 100 011
010 01 001 010 110 01 001 000
010 10 110 011 110 10 110 001
010 11 011 000 110 11 011 010
011 00 100 111 111 00 100 101
011 01 001 110 111 01 001 100
011 10 010 100 111 10 010 110
011 11 111 101 111 11 111 111

Table 2.2 State Table For Convolutional Encoder
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Table 2.2 can also be used to derive a trellis diagram. The trellis diagram
and the state diagram convey equivalent information. The trellis diagram
for the convolutional encoder of the V.32 modem is shown in Figure 2.13.

Each node of the trellis represents a state and each node is labelled with
the three-bit value of that particular state out of the eight possible states. A
line is drawn from a state in one time window to a state of the next time
window and represents the transition from one state to another for any
given 2-bit input. Figure 2.13 shows some of the trellis paths labelled with
the 3-bit output that was produced as the delay elements went from one
state to another.

Time window 1 Time window 2 Time window 3

101
[

100
®

o o
pury pury
oc o-

001
[

000

Figure 2.13 Trellis Diagram For Convolutional Encoding

It is assumed that at time t=0, the contents of each delay element is 0.
Therefore the starting point for the trellis is at state 000. There are four
possible combinations of 2-bit inputs and therefore, four lines that come
out of state 000 and connect to the corresponding states at time window 2
as specified by the state table. For example, an input of 01 results in a

49



2

50

Modems

change in the state of the delay elements from 000 to 011 with an output of
101. This information is conveyed in the trellis diagram by a line from
state 000 to 011 labelled 101. The trellis diagram in Figure 2.13 has some of
the branches labelled with the output value that is produced for a specific
state transition; the rest can be determined from the state table.

2.2.12 Data Constellation

A 2-bit input to the convolutional encoder produces a 3-bit output
containing a redundant bit. Because of redundancy, this 3-bit data value
can be corrected for errors that occur during transmission.

In the transmission of information in a V.32 modem, the three bits from
the output of the convolutional encoder are combined with two bits
coming directly from the data bit stream. In essence, four bits from the
data stream are being encoded to five bits (one redundant bit is added to
the four original bits).

To modulate a carrier with this information, a constellation is created that
maps any 5-bit data value to an X and Y coordinate or a real and
imaginary term associated. The real and imaginary terms are used to
modulate sine and cosine carriers for quadrature amplitude modulation.
Figure 2.14 shows the V.32 constellation with the 3-bit output of the
convolutional encoder underlined.

The demodulated carrier yields the original X and Y coordinates which
determine the original 5-bit data value. Since the transmission medium for
the carrier is noisy, the demodulated data may not be correct. The Viterbi
algorithm corrects errors introduced in transmission.

2.2.13 Viterbi Algorithm

The Viterbi algorithm decides whether demodulated data is the data that
was sent and if not, corrects it. It works by analyzing the pattern of data
values received over a period of time to deduce the data value that is most
likely to have occurred at the beginning of the period.

The received carrier is demodulated to produce X and Y coordinates of a
point on the signal constellation. The distances from that point on the
constellation to the nearest eight points that all have different leading
three bits are calculated. These Euclidean distances are then used to label
the branches of the trellis diagram. After a number of samples have been
received and mapped to the trellis diagram in this fashion, the diagram
can be read to determine the shortest path back to the original state, which
determines the data value that has the highest probability of having been
transmitted at that time.



Modems 2

Imaginary (Y)
4
1111 | 11000
[ [ °
01000 00161 01010
[ ° 4
10010 10101 10011 10100
° ° ] L] °
90000 o111 oodto otto1 00011
Real (X)
! Py [ r'y 8. 1 Py 7;
11001 11110 11010 11101
. . b . .
00111 01001 0q110 01011 00100
[ ] - ° [ ]
10000 10111 10001 10110
[}
01110 .00po1 01100
° + .
11100 11011

Figure 2.14 Signal Constellation Showing Convolutional Encoder Output

For example, assume that the received signal at time window 1 is mapped
into the constellation at coordinate 2, 2 (x, y). This does not correspond to
a five-bit code on the constellation. The Euclidean distances from this
point to the nearest eight points are calculated. Because of the way the
signal map is configured, each of these points has a different value for its
first three bits (underlined in Figure 2.14).

In the trellis diagram, the line connecting state 000 to state 011 in time
window 1 is labelled 101. The point in the signal constellation that is
nearest to 2, 2 and has the value 101 as its first three bits is 10100, at
coordinate 3, 2. The Euclidean distance between coordinate 2, 2 and 3, 2 is:

[(2-3) + (2272 =1
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Therefore, the branch of the trellis diagram going from state 000 to state
011 is labelled 1. This process is repeated to label the other branches on the
trellis diagram. As a new sample is received in each time window, the
trellis branches are labelled with the corresponding Euclidean distances.

After a given number of time windows have elapsed, the shortest path
back to the start of the first time window is calculated. The branch of the
shortest path in the first time window represents the original data value
that was transmitted.

Since the data point is determined only after a given number of time
windows has elapsed, a delay of (number of time window multiplied by
the symbol rate) is incurred. The more time windows that elapse before a
decision is made, the more accurate the decision. Thus there is a tradeoff
between accuracy and execution time.

2.2.14 ADSP-2100 Family Implementation

The first task of the program is to determine which eight points in the data
constellation are the nearest to the X and Y coordinates produced by the
demodulator. This is done using a lookup table. Each group in the lookup
table contains the X and Y coordinates of the four points in the
constellation that have the same 3-bit leading sequences. There are 32
points in the constellation, and therefore eight groups. Because the ADSP-
2100 is a 16-bit machine, the X and Y values are normalized for 16-bit data.
A negative full scale value of H#8000 and a positive full scale value of
H#7FFF are used for both the X and Y values.

For example, 00000, 00001, 00010 and 00011 are in group 0. The Euclidean
distance between the received point and the points in the group 0 are
calculated. The shortest distance is then written into another table called
min_dist in which the first location holds the shortest distance of the first
group, the second location holds the shortest distance of the second group,
etc. Table 2.3 shows the X and Y coordinates in each of the eight groups.
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Group X Y Group X Y
000 4 1 100 1 2
01 -3 2
41 1 2
0 -3 -3 2
001 4 -1 101 3 2
0 -1 -12
—4 -1 3 2
0 3 10
010 2 3 110 10
-2 3 1 4
2 -1 30
-2 -1 1 4
011 21 111 30
21 -10
2 3 -14
-2 -3 -1 4

Table 2.3 Lookup Table Of X & Y Coordinates
2.2.15 Shortest Path Through Trellis Diagram

After the distance from the received point for the current time window to
the closest point in each group is known, the total distance back to the
beginning of the trellis diagram can be calculated. Each time, only the
incremental distance for the time window, not the total distance, is
calculated.

An 8-location table acc_dist stores the accumulated distance through the
trellis diagram. Because the trellis diagram starts at state 000, the first
location of the table is initialized with a 0 and all other locations with the
positive full scale value. This ensures that, for the first time window, all
paths converge back to state 000, since this state starts with the shortest
accumulated distance.

At each time window, the surviving path to each state is determined and
the accumulated distance table is updated with the accumulated distance
of each of the eight surviving paths. The surviving path is determined by
taking the length of all of the possible paths going into a state and adding
that distance to the accumulated distance of the state at the other end of
the path.
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For example, Figure 2.15 shows the four paths that lead into state 001. The
length of each path is added to the accumulated distance of the state from
where the path emanates. The length of path 111 is added to the
accumulated distance of state 000, the length of path 100 to is added the
accumulated distance of state 010, the length of path 101 to is added the
accumulated distance of state 100, and the length of path 110 is added to
the accumulated distance of state 110. The lengths of these paths are read
from the min_dist table.

The minimum of these four distances becomes the new accumulated
distance to state 001 and is written into the appropriate location of the
accumulated distance table (acc_dist). As each surviving path leg is
determined, a table is filled with the distance of the path and the state
from which it came, to allow the program to trace back along the
surviving path to the beginning of the trellis diagram.

Time window N

Accumulated Distance Table

111 111
[ ) [ ) Accumulated Distance to State 000
110 110 Accumulated Distance to State 001
[ ) Accumulated Distance to State 010
101 101 Accumulated Distance to State 011
[ ) o Accumulated Distance to State 100
100 100 Accumulated Distance to State 101
110 [ ) Accumulated Distance to State 110
011 011 Accumulated Distance to State 111
101 1
010 .01 0 New Accumulated Old Distance to state 000 + length of path 111
.\1 00 Distance ;;:::‘:mﬂ Old Distance to state 010 + length of path 100
001. 001 Old Distance to state 100 + length of path 101

Old Distance to state 110 + length of path 110
oog/ m 000
o

Figure 2.15 Accumulated Distance Table Update Example
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After all eight accumulated distances are updated, the shortest of the eight
accumulated distances is determined. This path is traced back the given
number of time windows. The distance of the branch in the first time
window determines the data value most likely to have been transmitted.
The point in the data constellation that is this distance from the received
point represents the error-corrected symbol.

2.2.16 Viterbi Program

The example program uses N=20 time windows. In general, a value of N
which is greater than or equal to three times the constraint length gives
good results. In this case, the constraint length is 3, the number of bits
needed to describe the possible states at each time window. The larger the
value of N, the better the performance of the Viterbi algorithm, but the
longer the execution time and the larger the table sizes.

2.2.16.1 Initialization

The first part of the program declares buffers and initializes variables. A
buffer to store input data, eight tables holding the coordinates of the eight
data groups, eight tables holding the 5-bit codes for the eight data groups,
the accumulated distance buffer, eight state-tracing tables, eight buffers to
hold surviving path distances and some pointer tables are all declared in
the initialization section.

2.2.16.2 Data Input & Euclidean Distance

Data values are placed in registers AX0 and AX1 as X and Y coordinates,
respectively, for input to the Viterbi program. The code starting at
find_dist calculates the distances by calling the subroutine dist (which
calculates the Euclidean distance squared) followed by the subroutine sqrt.
This subroutine is repeated for each data group. The table min_dist is filled
with the shortest distance for each group.

2.2.16.3 Shortest Path

The code starting at short_path determines the shortest surviving path to
each state for the current time window. It also fills the eight state tables
with the distance of the surviving branch and the state from which the
branch came. The subroutine min_calc compares the four possible
surviving paths and determine the shortest.

2.2.16.4 Last Surviving Path

After the accumulated distances to all eight states are calculated, the
shortest is determined. The code starting at search determines the shortest
path and traces this path back to the start of the trellis diagram.
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2.2.16.5 Determination Of Error Corrected Data

When the surviving branch of the first time window is determined, the
closest point of the data constellation in that data group is found. This 5-
bit code is put into the SR1 register.

.MODULE/RAM viterbi;

{Viterbi decoder program for convolutional encoded data for a V.32 modem. This
program decodes information using N=20 levels or time windows of Viterbi decoding.

Demodulated data is stored as input to this routine in registers AX0 and AXl as
follows;

AX0=X coordinate
AX1=Y coordinate

This data is used as input.

The 5-bit data word output by this routine is placed in register SR1.)}

.CONST N=20;

.CONST base=h#0D49, sqrt2=h#5A82; {required for square root}
.VAR/PM/RAM sqgrt_coeff[5];

JINIT sqrt_coeff: h#5D1D00, h#A9ED00, h#46D600,

h#DDAAOO, h#072D00;
{table for storing last N inputs, as X and Y coordinate
table will contain alternating X, Y for each time window}
.VAR/DM/RAM/CIRC inputs[N+N];
{variables to hold new X and Y inputs}

.VAR/DM/RAM x_input;
.VAR/DM/RAM y_input;
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{tables for X and Y coordinates of data constellation points. Coordinates of both
axes are -4, -3, -2 ,-1, 0, 1, 2, 3, 4. They are represented in binary as:

-4 H#8000

-3 H#A000

-2 H#CO000

-1 H#E000

0 H#0000

1 H#2000

2 H#4000

3 H#6000

4 H#7FFF
}
.VAR/PM/RAM group0[8];
.VAR/PM/RAM groupl[8];
. VAR/PM/RAM group2[81];
.VAR/PM/RAM group3[8];
.VAR/PM/RAM group4[8];
.VAR/PM/RAM group5([8];
.VAR/PM/RAM group6[81];
.VAR/PM/RAM group7I[8];

.INIT groupO: H#7FFF00, H#200000, H#000000, H#200000,
H#800000, H#200000, H#000000, H#A00000;
.INIT groupl: H#7FFF00, H#E00000, H#000000, H#E00000,
H#800000, H#E00000, H#000000, H#600000;
.INIT group2: H#400000, H#600000, H#C00000, H#600000,
H#400000, H#E00000, H#C00000, H#E00000;
.INIT group3: H#400000, H#200000, H#C00000, H#200000,
H#400000, H#A00000, H#C00000, H#A00000;
.INIT group4: H#200000, H#400000, H#A00000, H#400000,
H#200000, H#C00000, H#A00000, H#C00000;
.INIT group5: H#600000, H#400000, H#E00000, H#400000,
H#600000, H#C00000, H#E00000, H#C00000;
.INIT group6: H#200000, H#000000, H#200000, H#7FFF00,
H#A00000, H#000000, H#200000, H#800000;
.INIT group7: H#600000, H#000000, H#E00000, H#000000,
H#E00000, H#7FFF00, H#E00000, H#800000;

{lookup table to get proper group}
.VAR/DM/RAM group_table[8];

.INIT group_table: ~group0, “~groupl, “group2, ~group3,
~group4, “group5, “group6, ~“group7;

(listing continues on next page)
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{eight tables which show the 5-bit codes that correspond to the X and Y

coordinates in the 8 group tables}

.VAR/DM/RAM codes0[4];
.VAR/DM/RAM codesl[4];
.VAR/DM/RAM codes2 (4] ;
.VAR/DM/RAM codes3[4];
.VAR/DM/RAM codesd [4];
.VAR/DM/RAM codes5([4];
.VAR/DM/RAM codes6[4];
.VAR/DM/RAM codes7([4];

.INIT codesO:
.INIT codesl:
.INIT codes2:
.INIT codes3:
.INIT codesd:
.INIT codes5:
.INIT codesé6:
.INIT codes7:

h#0003, h#0002, h#0000, h#0001;
h#0004, h#0006, h#0007, h#0005;
h#000A, h#0008, h#000B, h#0009;
h#000D, h#000F, h#000C, h#000E;
h#0013, h#0012, h#0011, h#0010;
h#0014, h#0015, h#0016, h#0017;
h#001A, h#0018, h#0019, h#001B;
h#001D, h#001E, h#001F, h#001C;

.VAR/DM/RAM codes_table[8];

.INIT codes_table: ~“codes0, “codesl, “codes2, “codes3,
~codes4, "“codes5, “codes6, "“codes7;

{table for accumulated distances at each state}
.VAR/DM/RAM/CIRC acc_dist[8];
. VAR/DM/RAM temp_dist[8];

{eight tables where each table contains the possible states from where a
path could come for each of the eight states}

.VAR/DM/RAM to_statel[4];
.VAR/DM/RAM to_statel([4];
.VAR/DM/RAM to_state2[4];
.VAR/DM/RAM to_state3[4];
.VAR/DM/RAM to_stated [4];
.VAR/DM/RAM to_state5[4];
.VAR/DM/RAM to_state6[4];
.VAR/DM/RAM to_state7[4];
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{table is stored with state numbers in backwards order}

.INIT
LINIT
LINIT
LINIT
.INIT
.INIT
.INIT
LINIT

to_statel:
to_statel:
to_state2:
to_state3l:
to_stated:
to_stateb:
to_stateb6:
to_state7:

{eight tables,

2,4,6,0;

each with N entries, where each entry contains the label of

the leg of the surviving path for a given time window}

.VAR/DM/RAM/CIRC
.VAR/DM/RAM/CIRC
.VAR/DM/RAM/CIRC
.VAR/DM/RAM/CIRC
.VAR/DM/RAM/CIRC
.VAR/DM/RAM/CIRC
.VAR/DM/RAM/CIRC
.VAR/DM/RAM/CIRC

{eight variables
tables above}

. VAR/DM/RAM
.VAR/DM/RAM
.VAR/DM/RAM
.VAR/DM/RAM
.VAR/DM/RAM
.VAR/DM/RAM
.VAR/DM/RAM
.VAR/DM/RAM

.INIT
.INIT
.INIT
.INIT
.INIT
.INIT
.INIT
.INIT

pointer0:
pointerl:
pointer2:
pointer3:
pointer4:
pointer5:
pointeré6:
pointer7:

{table used to
. VAR/DM/RAM

stateO[N];
statel[N];
state2 [N];
state3 [N];
stated [N];
state5([N];
state6 [N];
state7[N];

to hold the most recent pointer into the eight state

pointer0;
pointerl;
pointer2;
pointer3;
pointerd;
pointer5;
pointer6;
pointer7;

~stateO;
“statel;
~state2;
~“state3;
~stated;
~“state5;
~stateb6;
~“state7;

look up pointers declared above}

point_table([8];
(listing continues on next page)
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{initialize table with the addresses of the pointers}

.INIT point_table: “pointer0, “pointerl, “pointer2,
“pointer3, “pointer4, “pointers5,
~pointer6, “pointer7;

{table to hold the eight possible distances, minimum of each group}
.VAR/DM/RAM min_dist[8];

{interrupt vectors}
RTI;
RTI;
RTI;
JUMP decode;

IMASK=0; {disable all interrupts}
ICNTL=8; {interrupts edge sensitive, non-nested}
ENA AR_SAT;

I0="inputs; {init. I0 to start of input buffer}
LO0=%inputs; {init. LO to size of input buffer}
MO=1;
M1=0;
M3=-1;

{initialize input buffer to all 0s}

CNTR=%inputs; {load counter with size of buffer}
SI=0; {put a 0 into register si}
DO clear_buf UNTIL CE;

clear_buf: DM(IO,M0)=SI; {transfer 0 into buffer location}

{initialize accumulated distance table}
Il="acc_dist;
Ll=%acc_dist;
DM(I1,M0)=0;
CNTR=%acc_dist-1;
DO clear_acc UNTIL CE;

clear_acc: DM(I1,M0)=h#7FFF;



{initialize eight tables with 0}

init_tableO:

init_tablel:

init_table2:

init_table3:

init_tabled:

init_table5:

init_tableé6:

I2="statel;

L2=%state0;

CNTR=N;

DO init_table0O UNTIL
DM(I2,M0)=SI;

I2="statel;

L2=%statel;

CNTR=N;

DO init_tablel UNTIL
DM(I2,M0)=SI;

I2="state2;

L2=%state2;

CNTR=N;

DO init_table2 UNTIL
DM(I2,M0)=8I;

I2="state3;

L2=%state3;

CNTR=N;

DO init_table3 UNTIL
DM(I2,M0)=SI;

I2="state4;

L2=%state4;

CNTR=N;

DO init_tabled4 UNTIL
DM(I2,M0)=SI;

I2="state5;

L2=%state5;

CNTR=N;

DO init_table5 UNTIL
DM(I2,M0)=SI;

I2="stateéb;

L2=%stateb6;

CNTR=N;

DO init_table6 UNTIL
DM(I2,M0)=SI;

I2="state7;
L2=%state7;

CNTR=N;

DO init_table7 UNTIL

CE;

CE;

CE;

CE;

CE;

CE;

CE;

CE;

Modems

(listing continues on next page)
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init_table7: DM(I2,M0)=SI;
L2=0;
IMASK=8; {enable interrupt 3}
waitlp: JUMP waitlp;
{ }
decode: AX0=DM (codec) ;
AX1=DM(codec) ;
DM (IO,M0)=AX0; {store X input in input buffer}
DM(IO,M0)=AX1; {store Y input in input buffer}

DM (x_input) =AX0;
DM (y_input)=AX1;

{Calculate Euclidean distances from received point to 32 points of data
constellation. The shortest distance in each data group is saved and will
represent the distance for the trellis branch for the current time window}

find_dist: M4=1;
L4=0;
I4="group0;
CALL dist;
AR=PASS AF; {put distance squared into AR}
MRO=0;
MR1=AR;
CALL sqrt;
dist)=SR1

o IM1n

I4="groupl;

CALL dist;

AR=PASS AF; {put distance squared into AR}
MRO=0;

MR1=AR;

CALL sqrt;

DM(min_dist+1)=SR1l; {store shortest dist in table}

I4="group2;

CALL dist;

AR=PASS AF; {put distance squared into AR}
MRO0=0;

MR1=AR;

CALL sqrt;

DM(min_dist+2)=SR1l; {store shortest dist in table}
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I4="group3;

CALL dist;

AR=PASS AF; {put distance squared into AR}
MRO=0;

MR1=AR;

CALL sQqrt;

DM(min_dist+3)=SR1; {store shortest dist in table}

I4="group4;

CALL dist;

AR=PASS AF; {put distance squared into AR}
MRO=0;

MR1=AR;

CALL sqrt;

DM(min_dist+4)=SR1; {store shortest dist in table}

I4="group5;

CALL dist;

AR=PASS AF; {put distance squared into AR}
MRO0=0;

MR1=AR;

CALL sqrt;

DM(min_dist+5)=SR1l; {store shortest dist in table}

I4="groupb;

CALL dist;

AR=PASS AF; {put distance squared into AR}
MRO=0;

MR1=AR;

CALL sqrt;

DM(min_dist+6)=SR1; {store shortest dist in table}

I4="group7;

CALL dist;

AR=PASS AF; {put distance squared into AR}
MRO=0;

MR1=AR;

CALL sqrt;

DM(min_dist+7)=SR1l; {store shortest dist in table}

SR1=H#7fff;
DM (min_dist+8)=SR1;

{Add each path distance to accumulated distance to yield 4 accumulated
distances for each state. The shortest accumulated distance becomes the new
accumulated distance to that state.}

(listing continues on next page)
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{Find shortest path into state 0. Choose from 0, 1, 2, 3 of min_dist table; these
correspond to paths back to states 0, 6, 4, 2 respectively. The accumulated
distances to these states are added with the paths of the current time window to
determine the shortest accumulated path to this point.}

short_path: I2="min_dist;
I3="to_state0+3;
CNTR=4;
CALL min_calc;
DM (temp_dist) =AR; {store temporarily}
AX0=4;
AY0=STI;
AR=AX0-AYO; {calc. label from index of survivor}
SR1=AR; {store label into SR1l, pack later}

{find the state from which the shortest path came}
I2="to_statel-1;
{point to 1 before start of table}
M2=SI; {get index into table}
MODIFY (I2,M2); {point into table}
SI=DM(I2,M1); {get state at end of surviving path}

{now that state at end of path is known, store for later along with the 3-bit output
label of the suriving path; pack both into 1 word; state in high byte, label low

byte}

SR=SR OR LSHIFT SI BY 8 (H

I3=DM(pointer0); {get point for te path}
DM(I3,M0)=SR1; {store state for current time window}

DM (pointer0)=I3; {store new pointer}

{find shortest path into state 1, choose from 4, 5, 6, 7 of min_dist table these
correspond to paths back to states 2, 4, 6, 0 respectively}

I2="min_dist+4;

I3="to_statel+3;

CNTR=4;

CALL min_calc;

DM(temp_dist+1)=AR; {store temporarily}

AX0=8;

AY0=ST;

AR=AX0-AYO; {calc. label from index of survivor}
SR1=AR; {store label into SR1, pack later}

{find the state from which the shortest path came.}
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I2="to_statel-1; {point to start of table}

M2=STI; {get index into table}

MODIFY (I2,M2); {point into table}

SI=DM(I2,M1); {get state at end of surviving path}

{now that state at end of path is known, store for later use along with the 3-
bit output label of the suriving path pack both into 1 word state is in high
byte, label lo byte.}

SR=SR or LSHIFT SI BY 8 (HI);

I3=DM(pointerl) ; {get pointer for state path}
DM (I3,M0)=SR1; {store state for current time window}
DM (pointerl)=I3; {store new pointer}

{find shortest path into state 2, choose from 0, 1, 2, 3 of min_dist table
these correspond to paths back to states 4, 2, 0, 6 respectively}
I2="min_dist;
I3="to_state2+3;
CNTR=4;
CALL min_calc;
DM(temp_dist+2)=AR; {store temporarily}

AX0=4;

AY0=81;

AR=AX0-AYO; {calc. label from index of survivor}
SR1=AR; {store label into SR1, pack later}

{find the state from which the shortest path came.}

I2="to_state2-1; {point to start of table}

M2=STI; {get index into table}

MODIFY (I2,M2) ; {point into table}

SI=DM(I2,I1); {get state at end of surviving path}

{now that state at end of path is known, store for later use along with the 3-
bit output label of the suriving path pack both into 1 word state is in high
byte, label lo byte.}

SR=SR or LSHIFT SI BY 8 (HI);

I3=DM(pointer2) ; {get pointer for state path}
DM(I3,M0)=SR1; {store state for current time window}
DM (pointer2)=1i3; {store new pointer}

(listing continues on next page)
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{find shortest path into state 3, choose from 4, 5, 6, 7 of min_dist table
these correspond to paths back to states 6, 0, 2, 4 respectively}

I2="min_dist+4;

I3="to_state3+3;

CNTR=4;

CALL min_calc;

DM (temp_dist+3)=AR; {store temporarily}

AX0=8;

AY0=SI;

AR=AX0-AYO0; {calc. label from index of survivor}
SR1=AR; {store label into SR1l, pack later}

{find the state from which the shortest path came.}

I2="to_state3-1; {point to start of table}

M2=SI; {get index into table}

MODIFY (I2,M2); {point into table}

SI=DM(I2,M1); {get state at end of surviving path}

{now that state at end of path is known, store for later use along with the
3-bit output label of the suriving path pack both into 1 word state is in
high byte, label lo byte.}

SR=SR OR LSHIFT SI BY 8 (HI);

I3=DM(pointer3) ; {get pointer for state path}
DM (I3,M0)=SR1; {store state for current time window}
DM (pointer3)=I3; {store new pointer}

{find shortest path into state 4, choose from 0, 1, 2, 3 of min_dist table
these correspond to paths back to states 1, 7, 3, 5 respectively}

I2="min_dist;

I3="to_stated+3;

CNTR=4;

CALL min_calc;

DM (temp_dist+4)=AR; {store temporarily}

AX0=4;

AY0=SI;

AR=AX0-AYO0; {calc. label from index of survivor}
SR1=AR; {store label into SR1l, pack later}
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{find the state from which the shortest path came.}

I2="to_stated-1; {point to start of table}

M2=SI; {get index into table}

MODIFY (I2,M2); {point into table}

SI=DM(I2,M1); {get state at end of surviving path}

{now that state at end of path is known, store for later use along with the
3-bit output label of the suriving path pack both into 1 word state is in
high byte, label lo byte.}

SR=SR OR LSHIFT SI BY 8 (HI);

I3=DM(pointer4) ; {get pointer for state path}
DM(I3,M0)=8R1; {store state for current time window}
DM(pointer4d)=1I3; {store new pointer}

{find shortest path into state 5, choose from 4, 5, 6, 7 of min_dist table
these correspond to paths back to states 7, 1, 5, 3 respectively}
I2="min_dist+4;
I3="to_state5+3;
CNTR=4;
CALL min_calc;
DM(temp_dist+5)=AR; {store temporarily}

AX0=8;

AY0=ST;

AR=AX0-AYO0; {calc. label from index of survivor}
SR1=AR; {store label into SR1, will pack later}

{find the state from which the shortest path came.}

I2="to_state5-1; {point to start of table}

M2=ST; {get index into table}

MODIFY (I2,M2); {point into table}

SI=DM(I2,M1); {get state at end of surviving path}

{now that state at end of path is known, store for later use along with the
3-bit output label of the suriving path pack both into 1 word state is in
high byte, label lo byte.}

SR=SR OR LSHIFT SI BY 8 (HI);

I3=DM(pointer5) ; {get pointer for state path}
DM(I3,M0)=SR1; {store state for current time window}
DM (pointer5)=13; {store new pointer}

(listing continues on next page)
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1, 2, 3 of min_dist table
1 respectively}

choose from 0,
3, 7.,

{find shortest path into state 6,
these correspond to paths back to states 5,

I2="min_dist;
I3="to_stateb6+3;
CNTR=4;

CALL min_calc;

DM (temp_dist+6)=AR;

AX0=4;
AY0=SI;
AR=AX0-AYO0;
SR1=AR;

{calc.
{store label into SRI1,

{store temporarily}

label from index of survivor}
pack later}

{find the state from which the shortest path came.}

I2="to_state6-1;
I2=8I;

MODIFY (I2,M2);
SI=DM(I2,I1);

{now that state at end of path is known,

{point to start of table}

{get index into table}

{point into table}

{get state at end of surviving path}

store for later use along with the

3-bit output label of the suriving path pack both into 1 word state is in

high byte, label lo byte}
SR=SR or LSHIFT ST
I3=DM(pointer6) ;
DM(I3,M0)=SR1;

DM (pointer6)=I3;

nto state 7,
these correspond to paths back to
I2="min_dist+4;
I3="to_state7+3;
CNTR=4;
CALL min_calc;

DM (temp_dist+7)=AR;

AX0=8;
AY0=STI;
AR=AX0-AYO0;
SR1=AR;
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{find the state from which the shortest path came.}

I2="to_state7-1; {point to start of table}

M2=ST; {get index into table}

MODIFY (I2,M2); {point into table}

SI=DM(I2,M1); {get state at end of surviving path}

{now that state at end of path is known, store for later use along with the 3-bit
output label of the suriving path pack both into 1 word state is in high byte, label
lo byte.}

SR=SR OR LSHIFT SI BY 8 (HI);

I3=DM(pointer7) ; {get pointer for state path}
DM(I3,M0)=SR1; {store state for current time window}
DM (pointer7)=I3; {store new pointer}

{Put data from temp_dist back into acc_dist as new accumulated distance up to this
point.}

replace: CNTR=8;
I2="acc_dist;
Il="temp_dist;

I11=0;
DO move_buf UNTIL CE;
SI=DM(I1,MO0); {read data from temp_dist}
move_buf: DM(I2,M0)=SI; {put back as new acc_dist}

{Search through the acc_dist table for the shortest distance. This will indicate
the end point of the surviving path.}

search: I2="acc_dist;
CNTR=8;

SI=CNTR;
AYO=h#7FFF; {initialize with largest number}
AF=PASS AYO0;
AX0=DM(I2,MO) ;
DO short_dst UNTIL CE;
AR=AF-AXO0;
IF LE JUMP short_dst;
SI=CNTR; {save index of smallest}
IF GE AF=PASS AXO; {if smaller, update}
short_dst: AX0=DM(I2,M0) ;

AX0=8;
AY0=SI;
AR=AX0-AYO0; {calc. which state is at end of surviving path}

(listing continues on next page)

69



2 Modems

{Now that the end of surviving path is known (in AR), trace back N time
windows to find starting path or path of survivor in first time window.}

trace: CNTR=N; {trace back N time windows}
DO search_back UNTIL CE;

{read entry from proper state table to find from which state path came}

I2="point_table; {point to start of table}

M2=AR; {get offset into table}

MODIFY (I2,M2); {modify pointer to point into table}

AX0=DM(I2,M1); {read pointer address from table}

I2=AX0; {put pointer address into I2}

AY1=DM(I2,M2); {get pntr value, add. into state table}

I2=AY1;

AYO0=N+1; {calculate index into state table}

AX0=CNTR;

AR=AX0-AYO0;

M2=AR;

L2=N;

MODIFY (I2,M2); {point into state table using circ}

L2=0;

SI=DM(I2,M1); {read contents of state table}

AX0=SI;

AYO=h#FF; {set up mask to isolate path label}

AF=AX0 AND AYO; {extract path label}

SR=LSHIFT SI BY -8 (HI); {extract state info}
search_back: AR=8R1;

{At this point the surviving leg label is in AF and the state number in AR
find the 5-bit code in the group specified by value in AF that is closest
to the data recieved N time windows ago.}

final_stage: AR=PASS AF; {put leg label into AR}
MX1=AR; {store leg label in MX1, for later}
I2="group_table; {point to start of group table}
M2=AR; {get displacement into table}
MODIFY(I2,M2); {update pointer}
AX0=DM(I2,M1); {get address of proper table}
I4=AX0; {load i4 with start of group table}
AX0=DM(I0,MO0); {get X coord. of input N windows ago}
M2=-1;
AX1=DM(I0,M2); {get Y coord. of input N windows ago}
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AY0=32767; {init with max distance}
AF=PASS AYO, AYO0=PM(I4,M4); {get X value from table}
CNTR=4; {4 points in group}
DO ptloop2 UNTIL CE;
AR=AX0-AY0, AY1=PM(I4,M4); {do X-X’' and get Y}
IF AV JUMP ptloop2; {if overflow, go on}
MYO=AR, AR=AX1-AY1; {copy X-X’, do Y-Y'}
IF AV JUMP ptloop2; {if overflow, go on}
MY1=AR; {copy Y-Y’}
MR=AR*MY1 (SS), MX0=MYO; {square Y-Y’, copy X-X'}
MR=MR+MX0*MYO (RND) ; {add square of X-X'}
AR=MR1-AF; {compare with previous}
IF GE JUMP ptloop2; {if larger, no update}
AF=PASS MR1; {if smaller, update}
SI=CNTR; {save index of closest point}
ptloop2: AYO=PM(I4,M4); {get next X value}
AX0=4;
AY0=SI;
AR=AX0-AYO0; {calculate index from min pointer}
I2="codes_table; {point to start of codes_table}
M2=MX1; {leg label is offset into table}
MODIFY (I2,M2);
SI=DM(I2,M1); {get address of which codes buf}
I12=S81;
M2=AR; {get index into codes table}
MODIFY (I2,M2);
SR1=DM(I2,M1); {get 5-bit code from table}

{SR1 now contains the answer}
answer: DM(dac)=SR1;

RTI;
{——————— SUBROUTINES —}

{Calculate the Euclidean distance squared between the point specified by the x
and y coordinates found data memory locations x_input and y_input and the
points specified by the x and y coordinates found in the table pointed to by
index register i4. The index denoting the table entry which is closest to the
input point is left in register SI and the shortest distance squared is left in
register AF.}

dist: AY0=32767; {init min distance to max num}
AX0=DM (x_input) ;
AX1=DM(y_input) ;
AF=PASS AYO, AY0=PM(I4,M4); {get X value from table}
CNTR=4; {4 points in group}

(listing continues on next page)
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DO ptloop UNTIL CE;
AR=AX0-AYO, AY1=PM(I4,M4); {do X-X’ and get Y}

IF AV JUMP ptloop; {if overflow, go on}

MY0=AR, AR=AX1-AY1l; {copy X-X’, do Y-Y'}

IF AV JUMP ptloop; {if overflow, go on}

MY1=AR; {copy Y-Y'}

MR=AR*MY1 (SS), MX0=MYO; {square Y-Y'’, copy X-X'}

IF MV SAT MR;

MR=MR+MX0*MYO (RND) ; {add square of X-X'}

IF VM SAT MR;

AR=MR1-AF; {compare with previous}

IF GE JUMP ptloop; {if larger, no update}

AF=PASS MR1; {if smaller, update}

SI=CNTR; {save index of closest point}
ptloop: AY0=PM(I4,M4); {get next X value}

RTS;

{ }

{Take a 32-bit number whose most significant portion is in register MRl and
least significant portion in register MRO and calculate the 16-bit square
root. If the input is interpreted as a 16.16 unsigned number, the output in
register SR1 is in 8.8 signed format.}

sqgrt: I17="sqrt_coeff; {pointer to coeff. buffer}
M4=1;
L7=0;
SE=EXP MR1 (HI) ; {check for redundant bits}
SE=EXP MRO(LO);
AX0=SE, SR=NORM MR1 (HI); {remove redundant bits}

SR=SR OR NORM MRO (LO) ;
MY0=SR1l, AR=PASS SR1;

IF EQ RTS;

MR=0;

MR1l=base; {load constant value}
MF=AR*MYO (RND) , MX0=PM(I7,M4); {MF = x squared}
MR=MR+MX0*MYO (SS), MX0=PM(I7,M4); {MR = base + CX}
CNTR=4;

DO approx UNTIL CE;
MR=MR+MXO0*MF (SS), MX0=PM(I7,M4);

approx: MF=AR*MF (RND) ;
AY0=15;
MYO=MR1l, AR=AX0+AYO; {SE + 15 = 07?}
IF NE JUMP scale; {no, compute square-root}
SR=ASHIFT MR1 BY -7 (HI);
RTS;
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compute:
pwr_ok:

frac:
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MR=0;
MR1l=sqgrt2; {load 1 over square rt of 2}
MY1=MR1, AR=ABS AR;
AY0=AR;
AR=AY0-1;
IF EQ JUMP pwr_ok;
CNTR=AR; {compute (1/sgr-rt 2)"~(SE+15)}
DO compute UNTIL CE;
MR=MR1*MY1 (RND) ;
IF NEG JUMP frac;
AY1=h#0080; {load a 1 in 9.23 format}
AY0=0;
DIVS AY1l, MR1; {compute reciprocal MR}
DIVQ MR1;
DIVQ MR1;
DIVQ MR1;
DIVQ MR1;
DIVQ MR1;
DIVQ MR1;
DIVQ MR1;
DIVQ MR1;
DIVQ MR1;
DIVQ MR1;
DIVQ MR1;
DIVQ MR1;
DIVQ MR1;
DIVQ MR1;
DIVQ MR1;
MX0=AYO0;
MR=0;
MRO=h#2000;
MR=MR+MX0*MYO0 (US) ;
SR=ASHIFT MR1 BY 1(HI);
SR=SR OR LSHIFT MRO BY 1(LO);
RTS;
MR=MR1*MYO (RND) ;
SR=ASHIFT MR1 BY -7 (HI);
RTS;

(listing continues on next page)
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{

}

{Take the distances found in the table pointed to by register I2, add them
to the accumulated distance to the state specified in the state table
pointed to by register I3, and determine the shortest of these total
distances. The shortest distance is placed in register AR and the index of
the shortest distance is placed in register SI.}

min_calc:

read_nxt:

short_dist:

. ENDMOD;

L3=0;
SI=CNTR;
AYO=h#7FFF;
AF=PASS AYO0;

MR1=DM(I2,MO0) ;
SR=ASHIFT MR1 BY -1(HI);
AX0=8R1;

DO short_dist UNTIL CE;

AY1=DM(I3,M3);
I5="acc_dist;

M5=AY1;

MODIFY (I5,M5);
MR1=DM(I5,M4);
AR=MR1-AYO;

IF EQ JUMP read_nxt;
SR=ASHIFT MR1 BY -1(HI);
AY1=SR1;

AR=AX0+AY1;
AXO0=AR;

AR=AF-AX0;

IF LE JUMP read_nxt;
SI=CNTR;

IF GE AF=PASS AXO0;

MR1=DM(I2,MO0);
SR=ASHIFT MR1 BY -1(HI);
AX0=SR1;

AX0=DM(I2,MO0) ;

AR=PASS AF;

L3=N;

RTS;

Listing 2.8 Viterbi Decoder
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2.3 QUADRATURE AMPLITUDE MODULATION

The CCITT V.32 modem recommendation calls for the use of quadrature
amplitude modulation (QAM) in the transmit section and quadrature
amplitude demodulation in the receive section of the modem. The
encoded digital sequence to be transmitted is amplitude modulated in the
digital domain and then converted to analog form (via a D/A converter)
for transmission over the telephone wires. At the receiving end of the V.32
system, the received analog signal is digitized (via an A/D converter) and
demodulated in the digital domain in order to recover the information
that was sent.

This section describes the implementation of quadrature amplitude
modulation and demodulation on the ADSP-2100 family of processors.

2.3.1  QAM Methodology
Double-sideband quadrature amplitude modulation (QAM) is a very

efficient modulation technique in terms of bandwidth usage. In QAM, two
quadrature (90° phase-shifted) carriers, cos @ k and sin @ k, are
amplitude-modulated by two separate information-bearing signals, as
shown in Figure 2.16.

The synthesized digital sequence can be expressed as:

x(K) = m, (k) cos o k + m,(k) sin & k

where m, (k) and m,(k) are the two separate information-bearing signals.
The QAM signal sequence x(k) has the spectrum:

X@2nF) =1/2 Mj(w-0) + M(@ +©)]-j1/2 [M(0 - ®) - M,(0 + ® )]
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m 1(k) X
cosS ® ck
CARRIER
SIGNAL x(k)
GENERATOR
sin ® ck
m2(k) X

Figure 2.16 QAM Modulator Block Diagram

The spectrum components of the information-bearing signals overlap.
However, the quadrature phase relationship in the carrier components cos
o k and sin @ k allows the receiving end of the V.32 system to separate the

tears ciognala
tWO 8igiidis.

The demodulation is performed as shown in Figure 2.17. A digital phase-
locked loop is used to obtain the carrier component cos ® k and to
generate sin o k.

Subsequently, the received sequence is multiplied by the two quadrature
carriers. This multiplication results in two signal sequences:

x(k) cos @ k =1/2m,(k) + 1/2 m,(k) cos 20 k + 1/2 m,(k) sin 2m k
x(k) sin @ k =1/2m,(k) +1/2 m,(k) cos 20 k + 1/2 m,(k) sin 2w k
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The information-bearing signal components m, (k) and m, (k) can be
recovered by passing each of the sequences through a filter that rejects the
double-frequency terms centered at 2.

In this particular V.32 implementation, the carrier frequency (F ) is 1800
Hz, the symbol rate is 2400 Hz and the sample rate of the modulator is
9600 Hz. Thus, the desired cosine carrier is:

cos @ k = cos 2nF kT, = cos 2r(1800)(1/9600) k = cos 3n/8 k

and similarly the sine carrier is:
sin ® k = sin 31/8 k

Again, in this particular V.32 implementation, the sequences m, (k) and
m,(k) correspond to i(k) and q(k) respectively. These input streams are the
filtered versions of quadrature and in-phase portions of the encoded
symbols to be transmitted.

X
cos mck From Timing
Loop & PLL
L m (k)
CARRIER 1
x(k) — SIGNAL -—— To Equalizer
GENERATOR
i mz(k)
sin ® ck
X

Figure 2.17 QAM Demodulator Block Diagram
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.MODULE/RAM
.VAR/PM/CIRC
. VAR
. PORT

.INIT
.INIT

- EXTERNAL
.GLOBAL
.ENTRY

modulate:

. ENDMOD;

Modems

232  ADSP-2100 Family Implementation

There are two ADSP-21XX assembly modules that handle the modulation
and demodulation tasks separately. These modules are arranged as
interrupt service routines that can be called from a main program which is
presumably managing the V.32 modem.

Modulation is performed by the modulator routine shown on Listing 2.9.
The first section of the code contains the necessary variable, constant and
buffer declarations. The cosine table contains 16 discrete values of a cosine
wave between 0 and 2x, in increments of 7t/8. This table is used to
generate the cos3n/8k and sin3n/8k values for the modulation process.
The variable mod_ptr stores a pointer into the cosine table between
interrupts. The mod_ptr points to the cosine value to be modulated with
the next arriving data sample.

modulator;

cosine[1l6]; {Declare cosine table}

cos_ptr;

mod_out;

cosine:<cosval.dat>; {Initialize the cosine table}
cos_ptr:~cosine; {and the pointer}

g_in, i_in; {Input ports for i(k) and qg(k)}
cosine, mod_out;

modulate;

I4=DM(cos_ptr); {Read current pointer to cosine table}
M4=-4;

M5=7;

L4=16;

MX0=PM(I4,M4); {Read current cos value}

MYO0=DM(i_in) ; {Read I(k)}
MR=MX0*MYO0 (SS) ,MX0=PM(I4,M5); {cos(k)*I(k) and get -sin value}
MYO=DM(qg_in) ; {Read Q(k)}

MR=MR+MX0*MYO (RND) ; {cos (k) *I(k)-sin(k)*Q(k)}
SR=ASHIFT MR2 BY -1(HI); {Scale modulated output by 1/2}
SR=SR OR LSHIFT MR1 BY -1(LO);

DM (mod_out) =SR0; {Send scaled output}

DM (cos_ptr)=I4; {Save the cosine table pointer}

RTI;

Listing 2.9 Modulator Code
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The main body of the modulator code starts at the label modulate. The
current cosine pointer is read and used to fetch the proper cosine value
from the table. This fetch is done using M4=—4, which modifies the 14
register to point to the proper sine value on the following program
memory (PM) fetch. Next, the i(k) input is read and multiplied with the
cosine value. Subsequently, the proper sine value is fetched, multiplied
with the q(k) input and added to the previous multiplication result. The
sine value is fetched using M5=7 which modifies the I4 register to point to
the proper cosine value on the following PM fetch. At this point, the MR
register contains the output of the QAM modulator. Next, the contents of
MR are scaled down by 1/2 using the shifter. This is necessary to keep the
output of the modulator within a 16-bit field without causing overflows or
underflows. Finally the current I4 value is saved as mod_ptr and the
output is sent to the D/ A converter.

The demodulation is handled by the demodulator routine shown in Listing
2.10. The first section of the code contains the necessary variable, constant
and buffer declarations. This module also uses the cosine table that is
declared and initialized in the modulator program. The variable demod_ptr
points to the next cosine value for the demodulator, just as mod_ptr does
for the modulator.

The main body of the demodulator code starts at the label demodulate.
First, the current cosine pointer is read into I4. Next, the variable
phase_shift is read in order to determine whether the phase-locked loop
requires a phase shift in the cosine values to be used in demodulation. If a
shift is required, the subroutine cos_gen is called to compute new values
for the cosine table. Once this is completed, the appropriate cosine value is
read from program memory using M4=—4. This value is multiplied with
the input from the A/D converter and sent out to the memory location
xcos which represents x(k) cos @ k. Subsequently, the proper sine value is
fetched from program memory using M5=7 and multiplied with the A/D
input. This result is sent to the memory location xsin which represents x(k)
sin o)ck. Finally, the current I4 value is saved as demod_ptr.
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.MODULE/RAM demodulator;

. VAR cos_ptr;

.PORT xsin; {Sine demodulated received signal}

.PORT XCOS; {Cosine demodulated received signal}

.PORT ad_in; {Input port from the A/D}

JINIT cos_ptr:~cosine; {Initialize cosine table pointer}

. EXTERNAL ph_shift_flag, cosine;

.GLOBAL xsin, xcos;

.ENTRY demodulate;

demodulate: I4=DM(cos_ptr); {Read current ptr to cosine table}
AYO0=DM (ph_shift_flag); {Read phase shift flag from the}

{carrier recovery routine}
AR=PASS AYO;
IF NE CALL phase_shift; {Call if phase shift desired}

M4=-4;
M5=7;
L4=16;
MX0=PM(I4,M4); {Read the current cosine value}
MYO=DM (ad_in) ; {Read the A/D input}
MR=MX0*MYO (RND) ,MX0=PM(I4,M5); {cos (k) *x(k), get sine value}
DM (xcos) =MR1; {Output cosine demodulated sample}
MR=MX0*MYO (RND) ; {sin(k)*x(k)}
DM (xsin) =MR1; {Output sine demodulated sample}
DM (cos_ptr)=I4; {Save the cosine table pointer}
RTI;

phase_shift: MODIFY (I4,M4);
MODIFY (I4,M5);
RTS;

. ENDMOD;

Listing 2.10 Demodulator Code
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24 ECHO CANCELLATION

Most voiceband telephone connections involve several connections
through the telephone network. The 2-wire subscriber line available at
most sites is generally converted to a 4-wire signal at the telephone central
office. The signal must be converted back to a 2-wire signal at the far-end
subscriber line. The 2-to-4-wire interface is implemented with a circuit
called a hybrid. The hybrid intentionally inserts impedance mismatches to
prevent oscillations on the 4-wire trunk line. The mismatch forces a
portion of the transmitted signal to be reflected or echoed back to the
transmitter. This echo can corrupt data the transmitter receives from the
far-end modem.

The telephone system and sources of echo are shown in Figure 2.18. There
are two types of echo in a typical voiceband telephone connection. The
first echo is the reflection from the near-end hybrid, and the second echo is
from the far-end hybrid.

Noise Frequency
Shift

Transmit
Channel

i

Transmitter

Fg:Ec?d " Near-End
Hybrid ( Echo

Transmitter Receiver
iv
Receive

Far-End Modem Channel Near-End Modem

Receiver

Hybrid

!
i

Frequency
Shift Noise

Four Wire Trunk

Figure 2.18 Telephone Channel Block Diagram
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In long distance telephone transmissions, the transmitted signal is
heterodyned to and from a carrier frequency. Since local oscillators in the
network are not exactly matched, the carrier frequency of the far-end echo
is offset from the frequency of the transmitted carrier signal. In modem
applications this shift can affect the degree to which the echo signal can be
cancelled. It is therefore desirable for the echo canceller to compensate for
this frequency offset.

24.1  Echo Cancellation Algorithm

A data signal produced by a modem with a two-dimensional signal
constellation has the form

s(t) =RE [ £b_g(t-mT) e *™]

whereb_ is the complex data symbol and g(t) is the baseband pulse shape.
The frequency fis the carrier frequency. The echo signal is the transmitted
signal convolved with the channel transfer function, H(f). This transfer
function usually involves a linear delay and some dispersive filtering. The
echo signal has the form

s,() =RE [ Lb_h(t-mT) e 2=+t ]
where f is the frequency offset (Weinstein, 1977).

If the near-end modem is transmitting a signal s(n) and the far-end

modem is transemittino a sional vin) the near-end received sional is:
moagem 1s transmitling a signal y(n), the near-engd received signai 1s:

r(n) =y(n) +s_(n) + s, () + w(n)

where s__ and s, are the near-end and far-end echo respectively, and w(n)
is random noise introduced by the system.

Echo cancellation is accomplished by subtracting an estimate of the echo
return signal from the actual received signal. The received signal after
echo cancellation is

r'(n) = y(n) + (s, (n) — s _(n) + (s (n) = *s (n)) + w(n)
where /s, (n) is the estimate of the far-end echo and “s_(n) is the estimate

of the near-end echo. Ideally, the estimates are equal to the echo signals
and the echo terms drop out (Quatieri and O’Leary, 1989).
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The estimated echo is generated by feeding the transmitted signal into an
adaptive filter whose transfer function tries to model the telephone
channel’s (see Figure 2.19). The filter coefficients are determined using the
stochastic gradient (Least Mean Squared, or LMS) algorithm (Kamilo and
Messerschmitt, 1987) during a training sequence prior to full duplex
communications. The LMS algorithm attempts to minimize the mean
squared error | E(n)?|. A more detailed description of the LMS algorithm
can be found later in this chapter.

In the training sequence, because the far-end modem is not transmitting,
the received signal consists of echo:

r(n) =s_(n) + s, (n)
The output of the filter is an estimate of the received signal,
(n) = ’\sne(n) + ’\sfe(n)

and the difference is the error term that the LMS algorithm operates on.

E() = r(n) — M n)

> -
S(n)
\
(S, +8) = | Adamve
A A
(Spe( + Sg (M)

A A
Spe(n) + Sgg (N)

= &)

To Receive Circuit R(n) = Sne(n) + Sgg(n) + W(n)

Figure 2.19 Echo Canceller
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The adaptive filter is commonly implemented with a transverse FIR filter.
The structure of this filter is shown in Figure 2.20. The LMS update
equation for tap C at sample time n is

C(n),,, = C(n), + BA(M)E(n)

where A(n) is the sample transmitted at sample time 7, E(n) is the residual
error and B is an adaptation constant related to the rate of convergence.

N
Spe(n) + Se(n)
Figure 2.20 LMS Adaptive Filter

In a modem application, the filter taps are only updated during the
training periods. The tap update algorithm is either disabled or the
adaptation constant f is greatly reduced during full duplex operation. In
the second case, reducing B allows the echo canceller to track a slowly
changing telephone channel without retraining the modem.

24.2  ADSP-2100 Family Implementation Of LMS Algorithm

Figure 2.21 shows a flowchart for implementing the LMS stochastic
gradient algorithm on the ADSP-2100 family of processors. The LMS
algorithm is implemented in an interrupt service routine so that the
arrival of a new sample forces one iteration of the algorithm. In this
example, the FIR filter and the tap update are implemented as subroutine
calls from the interrupt service routine.
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In applications such as V.32 modems, the tap update algorithm gets
disabled during full duplex operation.

Start

Get Next
Transmitted
Sample

A

A
Generate Sg (n)
with FIR Filter

A

Get Next
Received
Sample R(n)

Update
Taps with
LMS Algorithm

Output Cancelled
Signal

Figure 2.21 Flowchart For LMS Stochastic Gradient Algorithm
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Listing 2.11 contains the LMS filter code. The ADSP-2100 family can
execute a multiply /accumulate operation and fetch two operands in a
single cycle. The FIR filter loop and the tap update loop are executed
without any additional cycles for loop overhead. These features allow the
FIR filter to execute in one cycle per tap and the coefficient update to
execute in two cycles per tap. Table 2.4 summarizes the execution speeds.

Some applications require the echo canceller to operate on complex data.
A complex data implementation of the LMS algorithm is described later in

this chapter.

.MODULE/RAM/ABS=0 adaptive;

{ Near and Far End Echo Canceller

INPUT: Received Data from Channel
Transmitted Data
OUTPUT: To Rest of Modem

. PORT received_data;

.PORT transmitted_data;

. PORT out;

.CONST A=154;

.CONST beta=H#CC;
.VAR/DM/RAM/CIRC enable;
.VAR/DM/RAM/CIRC afilt_datalA];
.VAR/PM/RAM/CIRC afilt_coeff[A];

{Received sample from channel}
{Transmitted sample from modem}
{Output to rest of modem}

{Adaptive filter length}
{Adaptation constant}
{Update enabled bit}
{Filter delay line}
{Filter coefficients}

{ Each new sample asserts interrupt 3}

start: RTI;
RTI;
RTI;
JUMP sample;
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{ Initialize Routine: This is executed during system startup}

.ENTRY

setup:

foo3:

fevr:

setup;

ICNTL=B#01111; {Initialize Interrupts}
MO0=0; {Initialize DAGS}
Ml=1;
M3=-1;
M4=1;
M5=1;
M6=-1;
M7=2;
I0="afilt_data;
I4="afilt_coeff;
LO0=%afilt_data;
L4=%afilt_coeff;
AX0=H#0000;
AY1=H#0000; {Initialize filter to 0}
CNTR=%afilt_data;
DO foo3 UNTIL CE;
PM(I4,M4)=AY1,DM(IO0,M1)=AX0;
IMASK=B#1000; {Enable IRQ2}
JUMP fevr; {Wait for Interrupt}

{ Interrupt Routine: This code processes one data sample}

sample:

done:

AY0=DM (received_data) ; {Received data: r(n)}
SRO=DM(transmitted_data); {Transmitted data: A(n)}
CALL fir; {Calculate r”~(n)}
AR=AY0-MR1; {AR=error=r-r”"}

DM (out) =AR; {Output cancelled data}
AX0=DM (enable) ; {Update taps if enabled}

AF=PASS AXO0;
IF EQ CALL update;
RTI;

{ FIR Filter

INPUTS:
I0=Start of data buffer in DM
I4=Start of coeff buffer in PM
SRO=Newest input value
M1,M4=1

OUTPUTS:
MR=Output value

ALTERS:
MR, MYO0, MXO0

(listing continues on next page)
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.ENTRY fir;

fir: DM(IO,M1)=SRO;
MR=0, MX0=DM(IO,M1), MYO=PM(I4,M4);
CNTR=A-1;
DO floop UNTIL CE;
floop: MR=MR+MX0*MYO0 (SS), MX0=DM(IO,M1), MYO=PM(I4,M4);
MR=MR+MX0*MY0 (RND) ; ’
RTS;

{ Adaptive Filter Coefficient Update
INPUTS:

I0=Start of data buffer in DM
I4=Start of coeff buffer in PM
M1,M4=1
M6=-1
M7=+2
AR=error of last iteration

Executes the coeff update algorithm as follows:
Ck+1=Ck+Beta*Error*A(n)

.ENTRY update;

update: MYl=beta; {Load Beta}
{MF=Beta*Error, Load Ck, A(n)}
MF=AR*MY1 (RND) , AYO=PM(I4,M4), MX0=DM(IO,M1);
MR=MX0*MF (RND) ;
CNTR=A; {Tap update loop}
DO uloop UNTIL CE;
AR=MR1+AY0, AY0=PM(I4,M6), MX0=DM(IO,M1);
uloop: PM(I4,M7)=AR, MR=MX0*MF (RND) ;
MODIFY (IO,M3);
MODIFY (I4,M6);
RTS;
. ENDMOD;

Listing 2.11 LMS Stochastic Gradient Implementation

243  Frequency Offset Compensation

Frequency offset in the far-end echo can limit convergence of the adaptive
filter. In order to compensate for shifts in the carrier frequency, it is
necessary to shift the received signal back to the original carrier frequency.
Figure 2.22 shows a block diagram for performing this operation. The
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frequency shifter is a first-order digital phase locked loop (DPLL). The
magnitude of the frequency shift is defined as

O \n+1) = G D) + B A(n) () - FN(n)) r(n)

where B is the adaptation constant, J(n) is the frequency offset of sample
n, @ (n) is the estimate of the frequency offset, A(n) is the transmitted
sample, and r(n) is the received sample from the echo channel (Wang and
Werner, 1988).

A(n)
> l >
156 Tap
/ Adaptive FIR
Filter
A A
Spe (M + Sg (N
< e 3 _ Hilbert
ur(n) glot r(n)
To Rest T
of System \ jot
e
> Phase > O(n+1
Update (n+1)
—>
oM | 1 |e
y4 <

Figure 2.22 Block Diagram Of Echo Canceller With Frequency Shift
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When compensating for frequency offset, the received sample must be
rotated before the error term is calculated. The new error equation is

E(n) = r(n) € - r(n)A

In a real system, the frequency shift is implemented in the time domain
with a Hilbert transform algorithm. Figure 2.23 shows the general
structure of this algorithm.

R(n) =A(n)e/® —» REAL |+ Rmn)e = A(n)e

HT

ejrat

j
Figure 2.23 Block Diagram Of Hilbert Transform
The Hilbert algorithm is best understood in the frequency domain.

Consider the real, bandlimited signal shown in Figure 2.24a. The Hilbert
transfer function is

H(w) - >0

+H o<0

The output of the Hilbert transform is multiplied by +j so that the
frequency magnitude is real. The sum of the Hilbert transform and the
original sample is complex in the time domain and contains only positive
frequencies in the frequency domain. The magnitude in the frequency
domain is equal to twice the magnitude of the original sample (Figure
2.244d).

The frequency shift is accomplished by convolving (in the frequency
domain) the signal in Figure 2.24d with the desired frequency. This
convolution is equivalent to multiplying the time domain signal by
e7%f, where @_is the desired frequency shift. The sample is converted
back to a real signal by taking the real part of the complex waveform.
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Figure 2.24 Spectrum Of Hilbert Frequency Shift
244  ADSP-2100 Family Implementation Of Hilbert Transform

Code implementing a Hilbert transform is shown in Listing 2.12. The
received signal must be rotated before E , the error signal for the adaptive
filter, can be calculated. The Hilbert transform is thus performed in a
subroutine called from the LMS interrupt service routine.
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The Hilbert transform is implemented with a 31-tap transverse FIR filter.
Since every other coefficient is zero, the circular buffers in the ADSP-2100
are programmed to access every other data sample. This is possible using
multiple modify registers with a single index register in the data address
generators. The 31-tap Hilbert transform executes in 20 cycles.

To compensate for the group delay in the Hilbert transform, a 15-cycle
linear delay is required for the real-valued input signal. Again, the circular
buffering capabilities of the ADSP-2100 family allow for a simple
implementation. Once the delay line is initialized, the index registers
automatically increment to the next value, even when the end of the buffer
is reached. The 15-tap delay line executes in just 3 cycles per sample.

The addition operation described shown in Figure 2.23 is actually
summing of a real and a complex number. Since a real and imaginary
number cannot be added, this operation is not implemented in the code.
Instead, the real and imaginary parts are used in the complex
multiplication.

The complex multiply by €7 would normally require four
multiplications and two additions. In practice, the desired output is
contained entirely in the real part of the product. Therefore, only two
multiplications and one addition are required. The values for sin(®_t) and
cos(®_t) must be calculated for each successive sample.

The single cycle multiply /accumulate operation on the ADSP-2100 family
allows both multiplications and the addition to be executed in two cycles.
Execution time is also reduced when operands are fetched from data
memory in parallel with the multiplications. In transmit mode, the entire
Hilbert frequency shift requires about 100 cycles to execute.



.MODULE/RAM/ABS=0

{ Hilbert Rotator

hilbert_rotator;

INPUT: Received Sample
OUTPUT: To Adaptive Filter

Modems 2

.CONST H=31; {Length of Hilbert xform filter}
. PORT received_data; {Received sample from channel}
. PORT out; {Output to rest of modem}
.VAR/DM/RAM/CIRC hdelay [H]; {Delay line for phase matching}
.VAR/DM/RAM/CIRC hil_dat[H]; {filter data values}
.VAR/PM/RAM/CIRC hilbert_coeff[16]; {Hilbert filter coefficients}
.VAR/DM/RAM time;

.VAR/DM/RAM delta_time; {Delta for frequency shift}
.VAR/DM/RAM high;

.VAR/DM/RAM low;

.VAR/DM/RAM ovr;

.INIT hilbert_coeff: <hilb.dat>;

{Hilbert filter coefficients})

{ Initialize Routine: This is executed during system startup}
. ENTRY setup;

setup: AXO0=H#00;
DM (time) =AX0;
AXO=H#02;
DM (delta_time)=AX0;
CNTR="HIL_DAT;
DO iloop UNTIL CE;
DM(IO0,M1)=H#0000;

{Init Delay line, Hilbert data}

iloop: DM(I1,M1)=H#0000;
IMASK=B#1000; {Enable IRQ2}
fevr: JUMP fevr; {Wait for Interrupt}

{ Interrupt Routine: This code processes one data sample)

sample: AY0=DM(received_data); {Received data: r(n)}
CALL delay; {Insert r(n) into delay line}
CALL hilb; {Execute Hilbert transform}
CALL rotate2;
AR=MR1;
DM (out) =AR;
RTI;

(listing continues on next page)
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{ 31 Tap Linear Delay Line

INPUTS: AY0=Newest Input Value
I0=0Oldest value in delay
M0=0
Ml=1

OUTPUTS: AXl=Delay line output

}
.ENTRY delay;

delay: AX1=DM(IO0,MO0);
DM(I0,M1)=AYO0;
RTS;

{ 31 Tap Fir Hilbert Filter
INPUTS: AYO=Newest Input Data
I1=0Oldest data value
I4=First Coeff value

M0=0
Ml=1
M4=1
OUTPUTS: AYO=Hilbert output
}
.ENTRY hilb;
hilb: MR=0, MX0=DM(I1,M2), MYO=PM(I4,M4);
CNTR=16;
DO hil_loop UNTIL CE;
hil_loop: MR=MR+MX0*MYO0 (SS), MX0=DM(I1,M2), MYO=PM(I4,M4);

MR=MR+MX(Q*MY(Q (RND) ;
DM(I1,M1)=AYO0;
AY0=MR1;

RTS;

{ Hilbert Rotator
Perform the calculation:
Y(t)=RE[(Xr(t)+jXi(t)* (exp(-jWt))]

INPUTS: AY0=Xi(t)
AX1=Xr (t)
AY1=W in degrees-ql5 format
W*t=DM(time)=time in ql5
OUTPUTS: MR=Y (t)



.ENTRY

rotate2:
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rotate2;

AX0=DM(time) ; {Get and update rotate time}
AY1=DM(delta_time) ; {on unit circle}

AR=AX0+AY1l, MYO0=AYO; {MYO=im(x) }

IF AC AR=PASS 0;

DM(time) =AR;

CALL sin; {Xi(t)*IM[exp(-jwt) ]}
MR=AR*MYO0 (SS), MY0=AX1;

DM (ovr)=MR2;

DM(high)=MR1;

DM (low) =MRO;

AYO=H#4000; {Xr(t)*sin(wt+90) }
AR=AX0+AYO0;

AX0=AR;

CALL sin;

MRO=DM (low) ;

MR1=DM(high) ;

MR2=DM (ovr) ;

MR=MR+AR*MYO (RND) ;

RTS;

{ Sine Calculation

Sine Approximation: Y=Sin(x)

INPUTS: AX0=x in scaled 1.15 format
M3=1
L3=0

OUTPUTS: AR=y in 2.14 format

Computation Time: 25 cycles

(listing continues on next page)

2
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.VAR/DM sin_coeff[5];
JINIT sin_coeff: H#3240, H#0053, H#AACC, H#08B7, H#1CCE;
.ENTRY sin;

sin: I3="sin_coeff; {Pointer to coeff. buffer}
AYO0=H#4000;
AR=AX0, AF=AX0 AND AYO; {Check 2nd or 4th quad}
IF NE AR=-AX0; {If yes, negate input}
AYO=H#7FFF;
AR=AR AND AYO0; {Remove sign bit}
MY1=AR;
MF=AR*MY1 (RND), MX1=DM(I3,M3); {MF=x2}
MR=MX1*MY1 (SS), MX1=DM(I3,M3); {MR=C1x}
CNTR=3;

DO approx UNTIL CE;
MR=MR+MX1*MF (SS) ;
approx: MF=AR*MF (RND) , MX1=DM(I3,M3);
MR=MR+MX1*MF (SS) ;
SR=ASHIFT MR1 BY 2 (HI);

SR=SR OR LSHIFT MRO BY 2(LO) ; {Convert to 2.14 format}
AR=PASS SR1;

IF LT AR=PASS AYO0; {Saturate if needed}
AF=PASS AXO0;

IF LT AR=-AR; {Negate output if needed}
RTS;

. ENDMOD ;

Listing 2.12 Hilbert Transform Implementation

24.5 V.32 Modem Implementation

V.32 modems operate in full duplex mode; both the near-end and far-end
modem are transmitting data at the same time. The echo canceller is
responsible for channel separation as well as cancelling the near-end and
far-end echos.

The echo canceller can be implemented in the passband or the baseband.
The advantage of passband cancellation is reduced computation. A
baseband echo canceller must execute all algorithms on complex data. In
addition, compensating for frequency shift in the baseband is difficult. The
disadvantage of passband echo canceller is a longer convergence time for
the adaptive filter and the digital phase locked loop. Figure 2.25 shows a
block diagram of a V.32 modem with a passband echo canceller.
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Figure 2.25 V.32 Modem Block Diagram

The CCITT specification for V.32 modems recommends a carrier
frequency of 1800+7 Hz. The echo canceller must be able to cancel 16 ms
of echo. At 9600 samples/second, a 154-tap FIR filter is required to cancel
the echo. It is recommended that the echo canceller be implemented with a
minimum number of taps.

Assuming that the canceller and frequency shifter have converged during
the training period, about 200 cycles are required to cancel a V.32 signal.
Benchmarks are summarized in Table 2.4.

Operation Cycles @12.5 MHz
Real FIR Filter N+6 80 ns per tap
Complex FIR Filter 4 (N-1) + 21 240 ns per tap
Real LMS Update (Stochastic) 2N +9 160 ns per tap
Complex LMS Update (Stochastic) 6N + 10 480 ns per tap
154-Tap LMS Filter With Update 935 74.8 us

N = Number of Taps

Table 2.4 ADSP-2100 Family Benchmarks For Echo Cancellation
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2.5 ADAPTIVE EQUAL!ZATION

This section presents subroutines for an ADSP-2100 family
implementation of an adaptive channel equalizer for a high speed modem.
The CCITT’s V.32 recommendation for a 9600 bps modem specifies the
use of this type of equalizer in the receiver section.

The architecture used in this equalizer is a fractionally-spaced tapped
delay line with a least-mean-squared (LMS) algorithm for adapting the tap
weights.

The topics discussed in this section are:

Historical perspective of adaptive filters
Applications of adaptive filters
Channel equalization in a modem
Equalizer structures

Least Mean Square (LMS) Algorithm
Program Structure

Practical considerations

25.1  History Of Adaptive Filters

Until the mid-1960s, telephone-channel equalizers were either fixed
equalizers that caused performance degradation or manually adjustable
equalizers that were cumbersome to adjust.

In 1965, Lucky (see “References” at the end of this chapter) introduced the
zero-forcing algorithm for automatic adjustment of the equalizer tap
weights. This algorithm minimizes a certain distortion, which has the
effect of forcing the intersymbol interference (ISI) to zero. This
breakthrough by Lucky inspired other researchers to investigate different
aspects of the adaptive equalization problem, leading to new improved
solutions.



Modems

Proakis and Miller (1969) reformulated the adaptive equalizer problem
using a new criterion known as the mean squared error (MSE). This
formulation requires a relatively modest amount of computation and
remains the most popular approach for data rates up to 9600 bits/s.

Three years later, Ungerboeck (1972) improved on this work by presenting
a detailed mathematical analysis of the convergence properties of an
adaptive transversal equalizer using the least-mean-squared (LMS)
algorithm. This algorithm is described later in this chapter.

A more powerful algorithm for adjusting the tap weights based on
Kalman filtering theory was developed soon afterward (Godard, 1974).
This algorithm is computationally demanding, but it was later modified
by Falcomer and Ljing (1978) to simplify its computational complexity.

All of these adaptive equalizer implementations are synchronous, that is,
the spacing between taps is equal to the reciprocal of the symbol interval.
Other possible structures include the fractionally spaced equalizer (FSE)
and the decision feedback equalizer (DFE).

The FSE has the ability to better compensate for channel distortion by
spacing the tap weights more closely than in the conventional
synchronous equalizer. Brady (1970) did some early work on this class of
equalizers and was followed by Ungerboeck (1976). The DFE, on the other
hand, uses a more elaborate structure and can yield good performance in
the presence of severe ISI as experienced in fading radio channels.

2.5.2  Applications Of Adaptive Filters

Adaptive filters offer a significant improvement in performance over
fixed-tap-weight digital filters because of their ability to detect signals in
environments of unknown characteristics. They are successfully used in
several areas including:

System Identification And Modeling

An adaptive transversal filter can be forced to converge to the same
impulse response as an unknown linear system and then can be used to
model the unknown system. To determine the taps for this filter, an
excitation input drives both the unknown system and the adaptive filter.
The outputs of these two systems are compared, and the error signal
generated is used to adjust the tap weights of the adaptive filter to reduce
the error size. After a sufficiently large number of iterations, the error is
reduced to some small value (in a statistical sense) and the tap weights
converge to model the real system.
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If the unknown system is dynamic and time-variant, the adaptive filter
can track these variations provided they are sufficiently slow compared to
the convergence time of the filter.

Echo Cancellation

In telephone systems that include both 2-wire and 4-wire loops, hybrid
circuits couple these lines. These hybrid circuits create impedance
mismatches which in turn create signal reflections, heard at both ends of
the line as echo. This echo is tolerable to some degree over long distance
voice connections, but can be catastrophic in high-speed data transmission
over cross-Atlantic links.

Echo cancellers, in the form of adaptive filters, model the impulse
response of the echo path. Cancellation is achieved by making an estimate
of the echo and subtracting it from the return signal.

Linear Predictive Coding

In the past 20 years, digital coding of speech waveforms has become a
popular technique for reducing speech degradation due to transmission.
Of the speech coding techniques, linear predictive coding (LPC) stands
out for its ability to produce low data rates. Basic speech parameters (e.g.
pitch, vocal tract, formants) are estimated, transmitted and then used at
the receiver to resynthesize the speech through a speech production
model. Adaptive filters can be used to estimate speech parameters in
model-based speech coding systems.

The speech quality of LPC is synthetic when compared to other coding
techniques such as PCM or ADPCM; however, its significantly lower data
rates make it attractive. The GSM standard for the Pan-European cellular
digital mobile radio network specifies an LPC-based coding scheme.

Adaptive Beamforming

A spatial form of adaptive signal processing finds applications in radar
and sonar. By combining signals from an array of sensors, it is possible to
change the directivity pattern of the array. Independent sensors (e.g.
antennas or hydrophones) placed at various locations in space or water
detect incoming waveforms. The collection of sensor outputs at a
particular instant is analogous to the set of consecutive tap inputs in a
transversal filter. The sensitivity and directivity of the sensor array can be
adaptively adjusted. Beamforming is discussed in Chapter 15 of Digital
Signal Processing Using the ADSP-2100 Family.



Modems

Adaptive Channel Equalization For Data Transmission

Adabptive filters used in digital communication systems as channel
equalizers minimize transmission distortion and maximize the use of
channel bandwidth. A typical bandlimited telephone channel or radio link
suffers from intersymbol interference (ISI) and additive noise. To improve
system performance in additive-noise channels, transmission power can
be increased. However, increased power has no effect on ISI since it
amplifies both the intended symbol sample as well as interfering ones.

The traditional technique for alleviating ISI is an equalizing filter at the
receiver. The receiver equalizer filter combines the channel characteristics
and the transmitter filter to minimize ISI distortions. Channel
characteristics, however, vary over time. An adaptive equalizer is needed
to ensure a constant transmission quality.

Since the channel conditions are unknown, a training sequence is
transmitted to bring up the equalizer from its initial (usually zero) state.
This sequence is known at the receiver and therefore the deviation error of
received samples from the expected sequence is used to adjust the
equalizer tap weights. Once the training period is completed, the weights
can still be continually updated in a decision directed mode. In this mode,
a minimum distance detector at the receiver decides which symbol was
transmitted. In normal operation these decisions have a high probability
of being correct, and thus are good enough to allow the equalizer to
maintain proper adjustment.

253 Channel Equalization In A Modem

The International Telegraph and Telephone Consultative Committee
(CCITT) sets standards and protocols for telephone and telegraph
equipment. Its V.32 modem recommendation specifies a fractionally
spaced transversal filter as the channel equalizer in the receiver. This
equalizer, along with trellis coding and quadrature amplitude modulation
(QAM), maximizes data rates over the bandlimited telephone channel.
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A telephone channel can suffer from a variety of limitations as a
communications medium:

As a bandlimited channel, it creates an environment for ISI.

Channel additive noise requires increased transmitted power to
improve signal-to-noise ratio.

Radio links create fading channels and echo in cross-Atlantic
connections

When several connections are frequency multiplexed, baseband speech
signals are modulated into the passband using different carrier
frequencies for transmission. Demodulating these passband signals
can create frequency offsets as well as amplitude and phase distortion.
Phase jitter (poor timing recovery).

Envelope delay or harmonic distortion is another limitation.

These channel limitations combined with the dense symbol constellation
of the V.32 modem necessitate adaptive equalization for acceptable error
rates at 9600 bits/s.

2.5.3.1 Equalization

The basic function of the equalizer is to create an ideal transmission
medium from a real channel. An example channel’s short impulse
response {h1, h2, h3, h4} is shown in Figure 2.26. The ideal medium is
characterized as a pure delay, shown in Figure 2.27.

h(t)

h2
h3

h4

Figure 2.26 Example Short Impulse Response
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Figure 2.27 Pure Delay Impulse Response

Take for example the equalizer shown in Figure 2.28 which has three taps
{c1, 2, c3}. Convolving this response with the channel’s impulse response

from Figure 2.26 yields
Y 000 h,
Y2| €600 h,
Y3 |= %640 | « h,
Ya| (0600 h,
Ys 00c¢c,
Ye 000c,

c®)

c3
c1T

Figure 2.28 Equalizer Impulse Response
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The outputs {y,, ¥,, Y, Y, ¥ ¥, T€present samples of the impulse response
of the combined channel/equalizer system.

If the equalizer is to create ideal conditions for transmission, all the y’s
should be zeros except for one main sample. Rewriting the equation for
ideal equalization yields:

0 c,00 0 h1
0 c,c,00 1'12
1| =|¢c0c0 o h3
0 0 ¢c,0 h4
0 00c,c,
0 000c,

or

0=c1h1

0=ch, +c,h

1= clh3 + c2h2 + c3hl
0= clh Lt c2h3 + c3h2
0= czh .t c3h3

0= c3h4

The system of equations above has only three controllable variables
(unknowns) but six simultaneous equations. The system is
overdetermined and can only be solved approximately. To approximate
this solution, a reformulation of a recursive technique known as method
of steepest descent can be used. This iterative algorithm is defined by the
equation:

MmcC

k+1 C,—AdE/aC,

where E is a defined performance index to be optimized. It is a function of
some controllable parameters (tap weights C,). E is minimized by
adjusting the tap weights in small steps (A). The gradient vector 0E/dC,
indicates the direction of the adjustment required to minimize E. This
method converges to an optimum solution when JE/dC, is zero.

.

.
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2.5.3.2 Performance Index

It is important to choose a meaningful performance index that is a linear
function of the tap weights and that defines a smooth error surface (bowl)
in the space spanned by the tap weight vector. This ensures the
convergence of the algorithm to the lowest point (minimum) of the error
surface.

In some cases, a desirable performance index is a nonlinear function of the
adjustable parameters and the solution is unrealizable. As an example,
consider the probability of error in a digital communication system. Even
though this is a meaningful measure of system performance, it is a highly
nonlinear function of the equalizer tap weights. Using the method of
steepest descent, it cannot be determined whether the adaptive equalizer
has converged to the optimum solution or to one of the relative minima of
the surface. For this reason some desirable performance indices must be
rejected.

A practical and popular index for performance is the mean squared error
(MSE). The error is measured as the difference between the received signal
and the ideal signal value. The MSE index is a measure of the energy in
this error signal averaged over a signaling interval. It results in a quadratic
performance surface as a function of the filter coefficients and thus has a
single minimum (optimal solution). An implementation of an MSE-based
iterative adaptation algorithm is developed for the ADSP-2100 processor
family in this chapter; it is discussed in a later section.

254  Equalizer Architectures

The preferred form of a linear equalizer is a tapped delay line. The delay
line consists of delay elements in a feedforward path and possibly a
feedback path.

If the delay line has feedforward delays only, its transfer function can be
expressed as a single polynomial in Z and therefore the equalizer has a
finite impulse response (FIR). This type of equalizer is often called a
nonrecursive or transversal equalizer (Figure 2.29).

If the delay line also has feedback delay elements, its transfer function is a
rational function of Z™ and the equalizer has an infinite impulse response
(IR) due to its nonzero poles (Figure 2.30).

The V.32 modem equalizer has no feedback delay elements and is
therefore an FIR equalizer.

2
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X(KT) T T T —l
Cct C2 Cn A@

Y(KT)
Figure 2.29 Transversal (FIR) Delay Line

2.5.4.1 Real Or Complex

In a one-dimensional communication system (e.g. pulse amplitude
modulation or PAM), the signal is real and the equalizer has real
coefficients. The V.32 modem, which uses quadrature amplitude
modulation (QAM), transmits complex data by modulating two

X(KT)

Figure 2.30 IR Delay Line
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orthogonal carrier signals. Because of cross-distortion between the in-
phase and quadrature channels in this two-dimensional communication
system, an equalizer with complex tap coefficients is required.

Algorithms for the complex equalizer are essentially the same as for the
real equalizer with the added burden of complex arithmetic. A complex
equalizer typically requires four times as many multiplications and
introduces the complex conjugation operator in recursive algorithms such
as LMS adaptation.

2.5.4.2 Sampling Rates

It is often advantageous to space the delay elements in an equalizer more
closely than the symbol rate, as shown in Figure 2.31. This has the effect of
oversampling the input to the filter and thus increasing the effective
bandwidth of the equalizer. The input is pushed onto the delay line twice
for every one output computed. Fractionally spaced equalizers have
superior performance because of wider bandwidth, and they simplify the
problem of phase synchronization between transmitter and receiver. They
do, however, suffer from stability problems in low noise conditions and
are more computationally demanding (Ungerboeck, 1976).

X(KT) T2 l T/2 T/2

Figure 2.31 Fractionally Spaced Delay Line (FSE)

A fractionally spaced filter can be designed the same way as a T-spaced
delay line filter. The basic delay line structure is the same for both. For a
T/2 FSE filter, the samples are shifted in at 2f_(twice the sampling

frequency) but the output is only computed at f, i.e. every other input
time.

The ADSP-2100 routine to implement the delay line with complex tap
weights is in Listing 2.13.
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{ Fractionally Spaced Filter (FSE) Subroutine

This Complex Fractionally Spaced Filter (FSE) Subroutine is used in the V32
equalizer. The basic structure for the delay line is the same as that of a
T-Spaced Filter (TSE). In the FSE case, however, samples are shifted in at
2Fs (Fs=Sampling Frequency) and the output is computed at Fs, i.e. at
alternate times. This subroutine will therefore be called after 2 new input
samples have been pushed onto the delay line.

Calling Parameters
I0—>0ldest data value in real delay line (Xr’s)
LO=filter length (N)
I1—>0ldest data value in imag. delay line (Xi'’s)
Ll=filter length (N)
I4—>Beginning of real coefficient table (Cr’s)
L4=filter length (N)
I5—>Beginning of imaginary coefficient table (Ci’s)
L5=filter length (N)
MO,M6=1
AXO=filter length minus one (N-1)
CNTR=filter length minus one (N-1)

Return Values
I0—>0ldest data value in real delay line
I1—>0ldest data value in imaginary delay line
I4—>Beginning of real coefficient table
I5—>Beginning of imaginary coefficient table
SR1l=real output (rounded, cond. saturated)
MR1=imaginary output (rounded, 1d. saturated
Altered Registers
MX0,MYO0,MR, SR1

Computation Time
2* (N-1)+2*(N-1)+13+8 cycles

All coefficients and data values are assumed to be in 1.15 format.
}
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fir: MR=0, MX0=DM(I1,M0), MYO=PM(I5,M6);
DO realloop UNTIL CE;
MR=MR-MX0*MYO (SS), MX0=DM(IO,M0), MYO=PM(I4,M6); {Xi*Ci}

realloop: MR=MR+MX0*MYO (SS), MX0=DM(I1,M0), MYO=PM(I5,M6); {Xr*Cr}
MR=MR-MX0*MYO (SS), MX0=DM(IO,M0), MYO=PM(I4,M6); {last Xi*Ci}
MR=MR+MX0*MYOQ (RND) ; {last Xr*Cr}
IF MV SAT MR;
SR1=MR1; {Store Yr}
MR=0, MX0=DM(IO,M0), MYO=PM(I5,MS6);
CNTR=AX0;

DO imagloop UNTIL CE;
MR=MR+MX0*MYO (SS), MX0=DM(I1,M0), MYO=PM(I4,M6); {Xr*Ci}
imagloop: MR=MR+MX0*MYO (SS), MX0=DM(IO,MO0), MYO=PM(I5,M6); {Xi*Cr}

MR=MR+MX0*MYO0 (SS), MX0=DM(I1l,M0), MYO=PM(I4,M6); {last Xr*Ci}
MR=MR+MX0*MYO (RND) ; {last Xi*Cr}
IF MV SAT MR; {MR1=Yi}
RTS;

Listing 2.13 Delay Line Routine, Complex Tap Weights

255 Least Mean Squared (LMS) Algorithm

Since the mean squared error (MSE) performance index is a convex
function of the tap weights (has a bowl-shaped surface), the optimum tap
weights can be obtained by the steepest descent algorithm. In this
algorithm, tap weights are assumed to have an arbitrary initial setup and
are moved in the direction of optimum value when MSE is minimized.
The direction is determined by the gradient of the objective function of
performance,

@) E= | e(kt) 12

where e(kt) is the error between the estimated symbol and the received
sample and the bar above the expression denotes time averaging.
Optimum tap weights are determined when the derivative of the MSE
surface with respect to all the tap weights is zero.

3) 0E/aC, =0 1<k<N, for an N-tap filter

The error function E is a complex quadratic function because of the 2-
dimensional modulation scheme (QAM). The derivative expression is:

@) OE/8C, (K) = -2 e(k) y(kT,  ~nT, )
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where Ttaps is the spacing between the taps

TSym is the spacing between symbols

Combining with equation (1) yields:

®5) C,(k+1) = C (k) + Be(kt) y*(kTsym - nTtaPs)

The implementation of the steepest descent algorithm requires the
evaluation of the cross-correlation of error signal e(kt) and received signal
y(t). Cross-correlation requires time-averaging, which is not a viable
option considering the real time requirements of the equalizer. To
alleviate this problem, the approximation:

(6) e(kt) y*(kTSym - nTtaPs) =~ e(kt) y"(kTsym - nTtaPS)
is used instead of time-averaging. This simplification of the steepest
descent algorithm greatly reduces the amount of computation. It is very

popular and is generally referred to as the least mean square (LMS)
algorithm.

An LMS algorithm updates the equalizer tap weights according to

(7) Cn(k+1) = Cn(k) + Be(kt) y’*(kTSym - nTtaps)

T ickiznr D 1A chlhnvirg an TAMC Alannitlhen tmmmlamanniad Am tlaa ATCD N1NN
l_:lDl].lls Ll DIIVVYVD All LLVID alsullu 1L llllylcl 1I1cu L UIT NI ~41UV
family
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Complex SG Update LMS Subroutine.
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This routine updates the complex taps according to the relation:

}

upd_taps:

adaptc:

Cn(k+1)=Cn(k)-Beta.E(k).Y*(n-K)

where:

<Beta>=Adaptation step size
<E(k)>=estimation error at time k
<Y* (n-k)>=Received signal complex

conjugated & sampled at time (n-Xk)

Calling Parameters
I0—>0ldest data value
I1—>0Oldest data value
I4—>Beginning of real

of Beta*Error
of Beta*Error

MXO=real part
MXl=imag part
MO,M5=1

Ml=-1

M6=0
CNTR=Filter length (N)

Return Values
Coefficients updated
I0—>0ldest data value
I1->0ldest data value
I4—>Beginning of real
I5—>Beginning of imag

Altered Registers
MYO,MY1l,MR, SR,AY0,AY1,AR

Computation Time
6*N+10 cycles

in real delay line
in imag. delay line L1=N
coefficient table
I5—>Beginning of imag coefficient table

LO0=N

L4=N
L5=N

in real delay line
in imag delay line
coefficient table
coefficient table

All coefficients and data values are assumed to be in

1.15 format.

MYO=DM(IO,MO0) ;

MR=MX0*MYO0 (SS), MY1=DM(I1,MO0);

DO adaptc UNTIL CE;
MR=MR+MX1*MY1 (RND) ,
AR=AY0-MR1, AY1=PM(I5,M6);

PM(I4,M5)=AR, MR=MX1*MYO(SS);
MY0=DM(10,MO0) ;

MR=MR-MX0*MY1 (RND) ,
AR=AY1-MR1,MY1=DM(I1,M0);
PM(I5,M5)=AR, MR=MX0*MYO(SS);
MODIFY (IO,M1);
MODIFY (I1,M1);
RTS;

Listing 2.14 LMS Routine

AY0=PM(I4,M6) ;

{Get Xr}

{Er*Xr, get Xi}

{Ei*Xi, get Cr}

{Cr- (Exr*Xr+Ei*Xi), get Ci}
{Store new Cr, Ei*Xr}
{Er*Xi, get Xr}
{Ci-(Ei*Xr-Er*Xi), get Xi}
{Store new Ci, Er*Xr}

{point back to start}
{of complex delay line}
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25.6  Program Structure
The flowchart shown in Figure 2.32 depicts the sequence of operations of
an equalizer program. Each program section is discussed below.

S, =Received sample
Initialize
Variables So = Output sample
\ 4
2 input samples for
Input 2 New Samples every output in this
fractionally-spaced
equalizer
\ 4
Equalize and
Compute Output, S,

!

Training
Required
?

A

Read Reference Sy From
Training Sequence

y

Estimaie Heference v
Symbol Based On
Min. Euclidean Distance

Estimate Error
So— Sr

Update Tap Using LMS

To Input New
Samples
y

Output Decided Symbol

Figure 2.32 Adaptive Equalizer Flowchart
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2.5.6.1 Input New Sample

The equalizer program is interrupt-driven. The arrival of a new complex
sample causes the equalizer to start executing. The sample_in port in
Listing 2.15 holds the new sample (real, then imaginary). Index registers 10
and I1 point to the complex delay line.

The V.32 modem recommendation specifies a fractionally spaced
equalizer. The delay line therefore consists of delays that are spaced at
one-half the symbol rate. This means that the output (at 2400 symbols/s)
is only computed for every two input samples (at 4800 symbols/s). The
variable decimator_flag is used to decide whether to get another sample or
to start computing the output.

{ input_new_sample routine

This part will read a new sample from the port ‘sample_in’ and
place it on the delay line. This new complex sample will overwrite
the oldest value on the delay line (complex also).

}

start: AR=DM (sample_in) ; {read in real & imag. values}
DM(IO0,MO0)=AR; {of new sample and store them}
AR=DM (sample_in) ; {in delay line}
DM(I1,M0)=AR;
AR=DM (decimator_flag) ; {check flag to see if filtering}

{is required this time through.}
AR=NOT AR; {Then toggle the flag}
DM (decimator_flag)=AR; {to ensure that we filter}
{every other sample}

IF EQ RTS; {as required in an FSE}

Listing 2.15 Input Routine

2.5.6.2 Filtering (Equalizing)

The actual filtering is performed in the subroutine in Listing 2.16. The
calling parameters for the filter are initialized, and after the subroutine is
called the return values are stored in data memory.
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{ do the fir filtering (equalization)

Performs the actual fir filtering. Takes the input sample
from the receiver front end & produces an output value
(fir_out_real & fir_out_imag)
}

AXO=no_of_taps-1;

CNTR=no_of_taps-1;

CALL fir;

DM(fir_out_real)=8SR1; {save return values of}
{subroutine in}

DM (fir_out_imag)=MR1; {their designated var names:}

{fir_out_real & fir_out_imag}

Listing 2.16 Filter Routine

2.5.6.3 Training Sequence

Initially the tap weights of the equalizer are at some arbitrary state
(possibly zero) that is typically far from the optimum state. The receiver
decisions based on the output of the equalizer are therefore incorrect with
a high probability. Decision-directed adaptation is not guaranteed to work
because of the initial high error rate. The equalizer might be unable to
move into the error-free region and the adaptation would diverge or stop
(MSE neither increasing nor decreasing significantly).

To train the equalizer through this blind stage, a data sequence that is
known at the receiver 1s used for mitial transmission. 1t the locally
generated reference is properly synchronized to the received signal, this
training brings the equalizer to its optimum state. After training, slow
channel variations are tracked using decision-directed adaptation.

The stored training sequence at the receiver is read at the training_list port
(real, then imaginary) in Listing 2.17. The received signal is read in from
the filter outputs fir_out_real and fir_out_imag. A complex error value
which is equal to the Euclidean distance between the two samples is
generated. The estimation error is stored in data memory (error_real and
error_imag).



Modems

{ estimate the transmitted symbol ( training )

Given fir_out_real & fir_out_imag, we compute the error value
(real and complex) using the training sequence as a reference.
This estimate for error is used only initially to train the
equalizer. Following the training, decision directed adaptation
would take over.

}

AXO=DM(fir_out_real); {inputs are fed in directly}
AX1=DM(fir_out_imag) ; {from output of fir}
AY0=DM(training_list);

AY1=DM(training_list)
CALL est_error_train;

'

{ }

{

Est_error_train subroutine: Returns the equalizer output minus the
ideal value available from the training sequence.

AXO=fir_out_real
AX1l=fir_out_imag
AYO=ideal_symbol_real
AYl=ideal_symbol_imag

Returns:
error_real
error_imag

}

est_error_train: AR=AX0-AYO;
DM (error_real) =AR;
AR=AX1-AY1;
DM (error_imag) =AR;
RTS;

Listing 2.17 Training Sequence Routine

2.5.6.4 Decision-Directed Adaptation

Once the equalizer is trained, decision-directed adaptation is possible. In
this mode, symbols estimated at the receiver are used as the reference
from which to measure the deviation error and subsequently adjust the
taps. With the equalizer trained, low decision-error rates make it possible
to continue to adapt to small changes in channel conditions.
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In Listing 2.18, the estimated symbol is chosen as the symbol
geometrically closest to the received coordinates. A 15-instruction loop
(worst case) computes the distance to each of the 32 symbols in the symbol
table and determines the nearest one. The routine returns a pointer to the
estimated symbol in the table as well as the real and imaginary values of
the error.

{ estimate the transmitted symbol ( no training )

Given fir_out_real & fir_out_imag, we compute the error value (real and
complex) using a Euclidean distance routine (decision directed adaptation).
In this mode the estimated symbol is the geometrically closest to the
received coordinates. This routine also returns the complex error value.
}
AXO=DM(fir_out_real); {these inputs are fed in directly}
AX1=DM(fir_out_imag) ; {from the output of the fir}
CALL est_error_eucl;
{ }
{Estimate_error_euclidean Symbol Subroutine
(normal mode, i.e. no training):

Maps input sample onto an ideal symbol in the constellation table This
routine also returns the value of the error measured as the Euclidean
distance between received signal and its ideal value.

Calling Parameters
AX0 contains Xr
AX1 contains Xi
MO=1
Ml=-1

Return Values
SI=decision index j
(position with respect to end of table)
AF=minimum distance (squared)
I2—>Beginning of constellation table

Altered Registers
AYO0O,AY1l,AF,AR,MX0,MY0,MY1,MR, ST
AR_SAT mode enabled

Computation Time
15*N+5 (maximum)
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est_error_eucl: I2="constellation_table;
L2=3; {number of symbols in}
{constellation table}
AY0=32767; {Initialize minimum distance to}
{largest possible value}
ENA AR_SAT; {put ALU in saturation mode to}
{prevent overflow}
AF=PASS AYO0, AYO0=DM(I2,MO); {Get Cr}
CNTR=32;
DO ptloop UNTIL CE;
AR=AX0-AYO0, AY1=DM(I2,MO0); {Xr-Cr, Get Ci}
MY0=AR, AR=AX1-AY1; {Copy Xr-Cr, Xi-Ci}
MY1=AR; {Copy Xi-Ci}
MR=AR*MY1 (SS), MX0=MYO; {(Xi-Ci)*2,}
{Copy Xr-Cr}
MR=MR+MX0*MYO0 (SS) ; {(Xr-Cr) "2}
IF MV SAT MR; {clip result to max value}
AR=MR1-AF; {Compare with previous minimum}
IF GE JUMP ptloop;
AF=PASS MR1; {New minimum if MR1<AF}
AR=AX0-AYO0; {error is euclidean distance}
DM (error_real) =AR; {between actual received}
AR=AX1-AY1; {signal and ideal symbol}
DM (error_imag) =AR; {coordinates}
SI=CNTR; {Record constellation index}
ptloop: AYO0=DM(I2,MO0) ;
MODIFY (I2,M1); {Point to beginning of table}
RTS;

Listing 2.18 Decision-Directed Adaptation Routine

2.5.6.5 Tap Update (LMS Algorithm)

Once an estimate error is computed, it is possible to adapt the equalizer
coefficients to a new set of values closer to the optimum vector. The LMS
routine in Listing 2.19 performs the computation. The estimation error is
first scaled down by the adaptation step size (B). This constant provides a
mechanism to trade off convergence speed against the amount of jitter in
the steady state value of the tap vector.

—
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{ update the taps

Takes the estimation error values previously computed multiply
them by the step size (beta). The upd_taps routine is then called
to update coefficients of the equalizer.

}

MYO=DM (error_real); {MXO=beta x error_real}
MXO0=beta;

MR=MX0*MYO (SS) ;

MX0=MR1;

MY1=DM(error_imag) ;

MXl=beta; {MXl=beta x error_imag}
MR=MX1*MY1 (SS) ;

MX1=MR1;

CNTR=No_of_taps;

CALL upd_taps;

Listing 2.19 Tap Update Routine

2.5.6.6 Output

These equalizer routines can be integrated into other modules to form the
receiver block of a V.32 modem. As specified in the V.32 recommendation,
the equalized sample is decoded using the Viterbi algorithm. The
equalizer output (real and the imaginary) is therefore written to an 1/O
port sample_out.

{ output the resulting sample of the equalizer}

AR=DM(fir_out_real); {output the equalizer output}

DM (sample_out)=AR; {to the outport port}

AR=DM(fir_out_imag) ;

DM (sample_out) =AR;

RTS; {return from equalizer routine and}
{wait for a new sample interrupt}

Listing 2.20 Output Routine
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2.5.7 Practical Considerations

This section describes considerations for using and modifying the routines
in this chapter.

2.5.7.1 Viterbi Decoder

In the implementation of decision-directed adaptation, the received
sample is matched to the nearest symbol and the error is used to adjust the
taps. A few wrong decisions could cause the equalizer to wander off
temporarily, but because right decisions have a proportionately larger
effect, convergence is ensured.

If a sophisticated algorithm such as Viterbi decoding is used to improve
the decision, the signal sample and error are not available until several
symbol intervals after the input time. This Viterbi delay requires a
modified LMS updating routing with delayed coefficient adaptation
(DLMS). It can be shown that the DLMS adaptation has the same steady
state behavior as the LMS adaptation, provided the adaptation constant is
within a certain range (Long et al, 1989).

2.5.7.2 Pseudo-Random Training Sequence

The routines in this chapter have been validated with a pseudo-random
training sequence. This training sequence consists of a set of symbol
values with a repetition period that is much longer than the convergence
time of the equalizer. The benefit of using such a sequence is that the
approximation of the gradient vector 0E/dC, is less noisy. Noisy estimates
of the gradient vector can cause the tap coefficients to wander a long way
from the path of the steepest descent (Bingham, 1988).

2.5.7.3 Delay Line Length

If the exact source of the channel’s distortion is known and the impulse
response can be modeled precisely, it is possible to calculate the minimum
order of the equalizer transfer function needed to reduce the MSE to an
acceptable level. In general, the only practical method of deciding the
length of the delay line is to derive a theoretical length based on several
worst-case channel characteristics. The equalizer is then designed slightly
longer than the theoretical minimum to compensate for the cumulative
effects of finite precision arithmetic in the ADSP-2100 family processor.
For a discussion of quantization effects in the LMS algorithm, see Bershad,
1989.
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2.6 CONTINUOUS PHASE FREQUENCY-SHIFT KEYED MODULATION
Constant phase modulation (CPM) techniques find applications in satellite
communications. Because of power amplifier considerations, satellite
communications require a modulation technique with a constant or nearly
constant envelope versus time (no amplitude modulation). Technological
and regulatory limitations also require low error probability for a given
signal-to-noise ratio and high bits per second of transmitted information
for a given bandwidth. The technique of multi-h CPM, which combines
encoding and modulation, achieves all of these goals.

This chapter describes an implementation of continuous phase frequency-
shift keying (CPFSK), a sub-class of multi-h CPM, on the ADSP-2100
family of processors. Only modulation is described here; demodulation is
usually performed with the Viterbi algorithm.

Fast frequency-shift keying (FFSK) is a special case of CPFSK with h=1/2.

2.6.1  CPFSK Methodology
The general form for a multi-h CPM signal is:

s(t; @) = V(2B /T ) cos [2nf t + @(t; &) + @]

E,  =symbol energy

T, =symbol duration

f, = carrier frequency (Hz)

@, = carrier phase (arbitrary)
¢(t; o) = information-carrying phase function, expressed as:

t oo
o] X ha, g(t-iT)dt —0o<t<oo
—00 i:—oo
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where:
o =(.. a8 5,8,8a,ay.. .), representing the data sequence
h, = setof K modulation indices cycled through periodically,
ie,h _=h
7 7hi+K i

g(t) = frequency pulse-shape function

For CPFSK, all h, are equal and the pulse-shape function is:

gt)=T,/2 for0<t<T, otherwise 0

2.6.2 ADSP-2100 Family Implementation

Figure 2.33 shows a flowchart of the CPFSK program implemented on the
ADSP-2100 family of processors. This particular implementation uses the
ADSP-2101 to take advantage of its on-chip serial ports and timer. The
timer generates a clock at the symbol rate (2400 baud) for reading input
data. The ADSP-2101 outputs CPFSK modulated data to a digital-to-
analog converter (DAC) at the rate of 8 kHz.

The CPFSK program is shown in Listing 2.21. This program sets up a
buffer of dummy data for demonstrations; in actual use, the data would
come from an input device and could be read from the FI (Flag In) input
of the ADSP-2101.

The CPFSK routine calls two external routines not shown here. The
cntlreg_inits routine initializes the ADSP-2101’s control registers. The
boot_sin routine computes the sine of the input in AX0, returning the
output in AR.

After setup (initializing variables, etc.) the processor waits for one of two
interrupts. The SPORTO interrupt causes the processor to calculate the
next output sample by adding the current phase increment to the phase
accumulator and computing the sine of the result. The output samples are
transmitted from SPORTO and are also sent to a DAC for display (for
demonstration).

The timer interrupt causes the processor to select a new phase increment
based on the value of the input data. Because the data is binary (1 or 0) it
could be input through the flag input (FI) pin instead of data memory as
shown. The code would have to be modified to use the state of the input
flag as a condition for selecting the phase increment.
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INITIALIZE

IDLE--WAIT FOR
INTERRUPT

SPORT
INTERRUPT
(at sampling rate, 8 kHz)

l

—

TIMER

INTERRUPT
(at symbol rate, 2400 baud)

l

¢=0+A9

check input data value

;

l1

lo

output=sin ¢

a

Ap=Ag b

.

¢ = current phase value (stored in "phase accumulator")

A@ = current phase increment
A a = phase increment for tone a

A b = phase increment for tone b

Figure 2.33 CPFSK Flow Diagram
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.MODULE/BOOT=0/ABS=0 cpfsk_modulator;
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{ CPFSK - Continuous Phase Frequency Shift Keying modulator

data stream stored in DM circ buffer
data could be state of FLAG_IN pin

(for demo)

(echoed for demo display)

phase_increment ;

{sport0 RX} {at 8 kHz rate}

{at 2400 baud}

etc}

input:
in actual use,
output: dac0 - CPFSK output waveform
dacl - input data stream
spkr - CPFSK “sound”
}
.EXTERNAL boot_sin;
.EXTERNAL cntlreg_inits;
. PORT write_dacO;
. PORT write_dacl;
. PORT load_dac;
.CONST lo_tone=220; {Hertz}
.CONST hi_tone=880; {Hertz}
.CONST logic_one=H#7F00;
.CONST logic_zero=0;
.VAR/CIRC demo_input_datal(7];
. VAR hertz0, phase_incr_0;
. VAR hertzl, phase_incr_1;
. VAR phase_accumulator,
{ }
JUMP start; RTI; RTI; RTI; {Reset Vector}
RTI; RTI; RTI; RTI; {irg2}
RTI; RTI; RTI; RTI; {sport0 TX}
JUMP sample; RTI; RTI; RTI;
RTI; RTI; RTI; RTI; {irg0}
RTI; RTI; RTI; RTI; {irgl}
CALL symbol; RTI; RTI; RTI; {timer}
{ }
start: CALL cntlreg_inits; {set up SPORTS, TIMER,

{used by bootsin routine}

{point to DM-mapped TIMER ctrl regs}

{2400 baud=5120 cycles @ 12.288 MHz}

M7=1; L7=0;
{ }
baud_clock: L0=0;
MO=1;
I0=H#3FFB;
{H#3FFB} DM(IO0,M0)=0;
{H#3FFC} DM(IO,M0)=5119;
{H#3FFD} DM(IO0,M0)=5119;

{TIMER - TSCALE}
{TIMER - TPERIOD}
{TIMER - TCOUNT}

(listing continues on next page)

123



2 Modems

{ }

make_demo_data: SI=1lo_tone;
SI=hi_tone;
SI=logic_one;
SI=logic_zero;

DM (hertz0)=SI;

DM (hertzl)=SI;

DM (demo_input_data) =SI;
DM (demo_input_data+1)=SI;
DM (demo_input_data+2)=SI;
DM (demo_input_data+3)=SI;
DM (demo_input_data+4)=SI;
DM (demo_input_data+5)=SI;
DM (demo_input_data+6)=STI;

I0="demo_input_data;
LO0=%demo_input_data;

{ }

{These segments convert “Hertz” to 8 kHz Phase_Increment}

load_tonel: SI=DM(hertzl) ;

SR=ASHIFT SI BY 3(HI);

MYO=H#4189;

MR=SR1*MYO0 (RND) ;

{mult Hz by .512%*2}
{i.e. mult by 1.024}

SR=ASHIFT MR1 BY 1(HI);
DM (phase_incr_1)=SR1;

load_tone0: SI=DM (hertz0) ;

SR=ASHIFT SI BY 3(HI);

MYO=H#4189;

MR=SR1*MYO0 (RND) ;

{mult Hz by .512%*2}
{i.e. mult by 1.024}

SR=ASHIFT MR1 BY 1(HI);
DM (phase_incr_0)=SR1;

{ }
SI=0;
DM (phase_accumulator)=SI;
CALL symbol;
ICNTL=B#01111;
IMASK=B#001001;
ENA TIMER;

{ }
here: JUMP here;

124

{clear phase accumulator on startup}
{start with first symbol}

{enable SPORTO_RX, TIMER now}
{start baud_clock now}

{wait for symbol and sample interrupts}
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sample: AX0=DM(phase_accumulator);
AY0=DM (phase_increment) ;

AR=AX0+AYO0;
DM (phase_accumulator) =AR;
AX0=AR;
CALL boot_sin;
sound: DM(write_dac0)=AR; {#display” CPFSK on oscilloscope}

DM (load_dac) =AR;

SR=ASHIFT AR BY -2 (HI);

TX0=SR1; {“hear” CPFSK from speaker (PCM out)}
RTI;

symbol: AX1=DM(IO,MO0); {get input data (could be FLAG_IN)}
DM (write_dacl) =AX1; {echo input data stream for demo}
DM (load_dac) =AR;
AF=PASS AX1;
IF EQ JUMP zero;

one: SI=DM (phase_incr_1); DM (phase_increment)=SI; RTS;
zZero: SI=DM(phase_incr_0); DM (phase_increment)=SI; RTS;
. ENDMOD;
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2.7 V.27 ter & V.29 MODEM TRANSMITTERS

V.27 ter and V.29 modem transmitters are often used in facsimile
transmission systems. This section contains example programs for
implementing these transmitters. The subroutines for each transmitter are
listed at the end of each subsection.

These subroutines include a V.27 ter transmitter and a V.29 transmitter
with two V.29 fallback modes. The code includes the scrambler, the IQ
encoder, pulse-shaped filter and modulator.

The V.27 ter scrambler does not implement the extra functions required to
check for repeating patterns. Both transmitters use the same pulse-shaped
filter code and random number generator code. These listing are included
only in section 2.7.1.

The code is contained in two subdirectories, V.27 and V.29. Each directory
contains the code and ancillary files necessary for that demonstration. The
file MAINXX.DSP calls a random number generator that creates data to be
transmitted. The file BUILD.BAT assembles and links the files.

The demonstration code is configured for an ADSP-2101 EZ-LAB®
Evaluation Board. To observe the encoder constellation, attach an analog
oscilloscope in X-Y configuration to the DACO and DAC1 pins on the EZ-
Lab board. To observe the eye pattern, attach an oscilloscope probe (in
sweep mode) to the analog output pin of the codec. A synchronization
pulse is available on DAC2 of the EZ-LAB board. The V.29 demonstration
enters the fallback modes when the IRQ2 button is pressed.

271 V.27 ter Transmitter

The CCITT Recommendation is a 4800 bits/s modem standard for data
transmission over the general switched telephone network. The
recommendation defines the following characteristics:

¢ Data rate of 4800 bits/s with 8-phase differentially encoded
modulation

¢ Fallback mode of 2400 bits/s with a 4-phase differentially encoded
modulation signal

e Provision for backward channel with a modulation rate of 75 bauds
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* An adaptive equalizer in the receiver
¢ The carrier frequency is 1800 Hz + 1 Hz

CCITT also specifies a raised cosine filter on the transmitter and the
receiver, a data scrambler, the phase encoding and the turn on sequence.

Figure 2.34 is a block diagram of a modem transmitter. The data stream to
be transmitted is first scrambled to randomize the data. The data
scrambler has a generating polynomial of the form:

1+x° +x7

with additional logic to guard against repeating patterns.

<
5

SERIAL DATA ____| DATA Q
STREAM SCRAMBLER GENERATOR

DATA OUTPUT
TOD/A
CONVERTER

Hill

Figure 2.34 Modem Transmitter Block Diagram

The scrambled data stream is divided into groups of three bits (tribits) and
is encoded as a phase change relative to the phase of the preceding word
transmitted. The phase change for each tribit combination is shown in
Table 2.5.

Tribit Values Phase Change
0 0 1 0°
0 0 0 45°
0 1 0 90°
0 1 1 135°
1 1 1 180°
1 1 0 225°
1 0 0 270°
1 0 1 315°

Table 2.5 8-Point V.27 ter Phase Changes
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The output of the encoder is then mapped to one point in an 8-point signal
space, or constellation. The signal space mapping produces two
coordinates, one for the real part and one for the imaginary part of a
quadrature amplitude modulator. Figure 2.35 shows the 8-point
constellation.

90°
135° 45°
180° -e o O0°
225° 315°
270°

Figure 2.35 8-Point V.27 fer Constellation

The output of the signal mapping is interpolated to a 9.6 kHz sample rate
and pulse-shaped filtered to assure zero inter-symbol interference. The
signal is then modulated onto an 1800 Hz carrier and then sent to the DAC
for transmission.

The 2400 bits per second fallback mode is similar to the 4800 bits per
second mode. The scrambled data stream is divided into groups of two
bits (dibits) before they are encoded into phase information. Table 2.6 and
Figure 2.36 show the phase change table and constellation of the 4-point
signal space used in the mode.

Dibit Values Phase Change
0 0 0°
0 1 90°
1 1 180°
1 0 270°

Table 2.6 4-Point V.27 ter Phase Changes
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180°

[ ]

270°

0°

[ ]

Figure 2.36 4-Point V.27 ter Constellation

{Main routine for
{Analog Devices
{DSP Applications
{
.module/ram/boot=0

{——————Fxternal Function Declaration

.external getl;

V.27 ter Modem

/abs=0 V27_MOD;

.external scramble;

.external iqg;
.external psf;
.external rand;

{—————Global Variable Declaration

.var/dm

.

.var/dm
.var/dm
.var/dm
.var/dm
.var/dm/ram/circ
.var/dm
.var/dm

.var/pm/ram
.var/dm/ram
.var/pm/ram
.var/pm/ram

{For Baud/Sample Count

sample_count; {Number of samples until next
{baud. Default is ? between baud
{For Scrambler

seed_hi; {Seeds for random number generator

seed_lo;

tri_bit; {Next bit to transmit

bit_count; {Number of bits left in current word

buffer[12]; {Delay Buffer

buf_ptrl; {Pointer to y(n-6) buffer value

buf_ptr2; {Pointer to y(n-7) buffer value
{For IQ Generator

delta_phi[8]; {Tribit phase change table

phi_value; {Current phi value

I_table([8]; {Tables for IQ Output Values

Q_table([8];

(listing continues on next page)
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.var/dm/ram/circ 1i_delay_line[5];
.var/dm/ram i_delay_ptr;
.var/pm/ram/circ i_coef_line[17];

.init i_coef_1line <17 .dat>;
.var/dm/ram i_coef_ptr;
.var/dm/ram i_psf_output;
.var/dm/ram sync;
.var/dm/ram i_output;
.var/dm/ram i_value;
.var/dm/ram g _value;

{For Pulse Shaped FIlters

{Data Delay line for I channel PSF
{Oldest value in delay line
{Coefficients for I challen PSF

{Last Coeff read by PSF

{Last output value of PSF

{For DAC Outputs

{Sync value for DAC

{Pulse shaped filter output value
{IQ section I output

{IQ section Q output

.init delta_phi: 0x200, 0x000, 0x400, 0x600,
0xC00, O0xEO00, OxAO00, 0x800;

.init I_table: 0x7f£££00,
0x800000,

.init Q_table: 0x000000,
0x000000,

.port write_dacO;

.port write_dacl;

.port write_dac2;

.port write_dac3;

.port load_dac;

.global delta_phi;
.global phi_value;
.global 1I_table;
.global Q_table;
.global Dbuffer;
.global Dbuf_ptrl;
.global buf_ptr2;
.global tri_bit;
.global bit_count;

.global i_delay_line;
.global i_delay_ptr;
.global i_coef_line;
.global i_coef_ptr;
.global i_psf_output;
.global sync;

.global i_output;
.global i_value;
.global g value;
.global seed_hi;
.global seed_lo;
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0x5b0000, 0x000000, 0xa40000,
0xa40000, 0x000000, 0x5b0000;
0x5b0000, 0x7f£££00, 0x5b0000,
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{ Interrupt Vectors
RESETV: jump start; {Reset Vector }
rti; rti; rti;
IRQ2V: rti; rti; rti; rti; {IRQ2 Vector
HIPWV: rti; rti; rti; rti; {Hip Write Interrupt Vector
HIPRV: rti; rti; rti; rti; {Hip Read Interrupt Vector
SPRTOT: rti; rti; rti; rti; {Sport(0 Transmit Interrupt Vector
SPRTOR: Jjump next_output; {Sport0 Receive Interrupt Vector
rti; rti; rti;
IRQ1V: rti; rti; rti; rti; {IRQ1l Interrupt Vector
IRQOV: rti; rti; rti; rti; {IRQO0 Interrupt Vector
TIMERV: rti; rti; rti; rti; {Timer Interrupt Vector
{ Main Code Starts Here
start: call V27_INIT; {Initialize ADSP-2101 Dags and Sports
imask = 0x08; {Enable Sports and Interrupts
ax0 = 0x101f;
dm(0x3f£ff) = ax0;
fevr: idle; {Wait for Interrupt
jump fevr;
{ MAIN ROUTINE

next_output:

{This interrupt routine is executed every output sample rate
{One output sample is calculated and a new baud is calulated
{if interrupt occurs at baud rate

{Output values to the DAC
ax0 = dm(i_value);

dm(write_dac0) = ax0;
ax0 = dm(g_value) ;
dm(write_dacl) = ax0;
ax0 = dm(sync);
dm(write_dac2) = ax0;

si = dm(i_output) ;
sr = ashift si by -2 (lo);

dm(write_dac3) = sr0;
dm(load_dac) = sr0;
tx0 = sr0;

{Check i1f new baud should be calculated

ax0 = dm(sample_count) ;

ay0 = 1;

myl = Ox7fff; {Set sync value for new sample
dm(sync) = myl;

ar = ax0 - ay0;

dm(sample_count) = ar;

if gt jump next_sample;

(listing continues on next page)

[

M e e e o

N e e

131



2 Modems

next_baud:

i4 = ~i_coef_line; {Reset Coefficient Pointer
dm(i_coef_ptr) = i4;
ax0 = 4; {Reset sample counter
dm (sample_count) = ax0;
si = 0; {Zero SI Register }
cntr = 3;
do scram_bit until ce;
call getl; {Get next 3 data bits to be transmitted

call scramble;
scram_bit:

myl = 0x8000; {Set sync value for new baud
dm(sync) = myl;
call IQ; {Calculate delta phi,phase sum,I and Q

jump next_sample;

{Generate Next output sample to DAC }
next_sample:
call psf; {Low Pass Filter I and Q components
done: rti;
{——————TInitialization for V.27
V27_INIT:
{———SPORT INIT
ax0 = 0x02; {SCLKDIV = 2.048 MHz
dm (0x3£f£f5) = ax0;
ax0 = 213; {RFSDIV = 213 for 9600
dm(0x3ff4d) = ax0;
ax0 = 0x6b27; {Internal SCLK, Frame Syncs
dm(0x3ff6) = ax0;
{——Wait States
ax0 = Oxffff;
dm(0x3ffe) = ax0;
{———Data Buffer Inits
I0 = "~buffer;
mO = 1;
L0 = %$buffer;
cntr = Sbuffer;
ax0 = 0;
do zloop until ce;
zloop: dm(i0,m0) = ax0;
{ Variable Initializations
ax0 = 0;
dm(tri_bit) = ax0;
dm(bit_count) = ax0;
dm (phi_value) = ax0;
dm (sample_count) = ax0;
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ax0 = "buffer+5;
dm(buf_ptrl) = ax0;
ax0 = "buffer+6;
dm(buf_ptr2) = ax0;
ax0 = 0xaba5;
dm(seed_hi) = ax0;
ax0 = 0x1234;

dm(seed_lo) = ax0;
{——Pulse Shaped Filter Inits }
i0 = "i_coef_line;

dm(i_coef_ptr) = i0;

i0 = "i_delay_line;

dm(i_delay_ptr) = i0;

10 = %i_delay_line;

ml0 = 1;

ax0 = 0;

cntr = %i_delay_line;

do dloop until ce;
dloop:

dm(i0,m0) = ax0;

ax0 = Ox7fff;

dm(sync) = ax0;

{————DAG INIT }
{Init MO,M1,M5,M5 }

m0
ml
mé
m5
10
11

12
14

13
14
15
16
17
rts;

{ END INITIALIZATION: }

{Set All L registers to zero }

L | | 1 I [ [ T 1}
oNeoNeoNoNeNoNoNol ol Nel

.endmod;

Listing 2.22 Main V.27 ter Routine (MAIN27.DSP)
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{GET2 routine for v.27 Modem
{Analog Devices

{DSP Applications

{

.module/ram/boot=0 getlmod;
{Get 1 data bit to be transmitted

INPUTS:
dm(data_word) 16 bit words for transmission
dm(bit_count) number of bits left in word

mO = 0

ml =1

m4d = 0

m5 = 1
OUTPUTS:

dm(tri_bit): bit to transmit
USAGE:

{
{
{
{
{
{
{
{
{
{
{
{
{
{ AX0, AYO, AR, SI, SR
{

{

Global Variable Declaration
.external tri_bit; {bit to transmit
.external bit_count; {number of bits left in word

{Local Variable Declaration

.var/dm/ram data_word; {Data word to be transmitted
.external rand;
{ Code Start
.entry GET1;
GET1:
ay0 = dm(bit_count); {If bit_count is zero
ar = pass ay0; {load new word
if ne jump dec_count;
call rand; {Load new data word here
dm(data_word) = ayO0;
ay0 = 16;
dec_count:
ar = ay0 -1; {Decrement counter
dm(bit_count) = ar;
get_bit:
sr0 = dm(data_word) ; {Get next bit
ay0 = 0x01;

ar = sr0 and ayO0;
dm(tri_bit) = ar;
sr = 1lshift sr0 by -1 (lo);
dm(data_word) = sr0; {Write data_word for next time
rts;
.endmod;

Listing 2.23 Data Acquisition Routine (GET27.DSP)
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{ 2/20/91 Start Date
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{This module performs v.27 ter scrambling on one input bit

{

{The scrambler generating polynomial is xin + y(n-6) + y(n-7)
{V.27 ter specifies additional checking for certain pattarns.

{This has not been implemented.

{

{ INPUTS:

{ dm(tri_bit) = bit to be scrambled
{ si = partial tri bit

{

{ OUTPUTS:

{ si = scrambled output bit

{ si is left shifted by 1 and the new bit is put in b0
{

{ USAGE:

{ I0 = “buffer

{ Il = Y(n-6)

{ I2 = y(n-7)

{

.module/ram/boot=0
{Local variable Declarations

.external buffer;
.external buf_ptrl;
.external buf_ptr2;
.external tri_bit;
.entry SCRAMBLE;
SCRAMBLE:

il = dm(buf_ptrl);

i2 = dm(buf_ptr2);

m3 = -1;

Ll = %buffer;

L2 = %buffer;

ax0 = dm(tri_bit);

ay0 = dm(il,m3);

ar ax0 xor ay0, ay0=dm(i2,mo0);

ar = ar xor ay0;
dm(i2,m3) = ax0;

sr = 1lshift si by 1 (lo);
sr = sr or lshift ar by 0 (lo);
si = sr0;
dm(buf_ptrl) = il;
dm(buf_ptr2) = i2;
Ll = 0;
L2 = 0;
rts;
.endmod;

SCRAMBLE_MOD;

{Delay Buffer
{Pointer to y(n-6) buffer value
{Pointer to y(n-7) buffer value

{Get Pointer values

{Set circular buffer registers

{Get next bit to scramble
{y (n-6)

{y (n-7)

{ =y(n)

{Store Oldest Value

{Store output in sr0

{Save buffer pointers

{Clear L registers

Listing 2.24 Data Scrambler Routine (SCRAM27.DSP)
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{Analog Devices
{DSP Applications

{ 2/20/91

Start Date

.module/ram/boot=0 PHI_MOD;
{Calculate delta phi, phase sum, I and Q{Analog Devices

INPUTS:

OUTPUTS:

USAGE:

P N e T e W e Wee Rt W Nana e

.external
.external
.external
.external
.external
.external
.external
.external
.external
.external
.entry
IQ:

SI = TriBit Value
dm[PHI] = current Phi Value

MX0 = I Value
MX1 = Q Value

I3, M3, AR, AX0, AYO

Q_table;
I_table;
delta_phi;
phi_value;
i_coef_line;
i_coef_ptr;
i_delay_line;
i_delay_ptr;
i_value;
q_value;

IQ;

{Look up Delta_phi value and add to phi for new phase

17 = ~delta_phi;

m7 = si;

modify (17, m7);

ax0 = dm(phi_value);
ay0 = pm(i7,m4);

ar = ax0 + ay0;

ayl = 0x0f;

ar = ar and ayl;
dm(phi_value) = ar;

{Look up I and Q components
{To find I/Q values, use phi/2 as offset into table

sr = 1lshift ar by -1 (lo);
I6 = ~I_table;

17 = ~Q_table;

m7 = sxr0;

modify (I16,M7);
modify (I7,M7) ;
mx0 = pm(i6,m4);
mxl = pm(i7,m4);

-
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{Write new values for DAC }
dm(i_value) = mxO0;
dm(g_value) = mxl;

{Write new I value to PSF Delay Line }

I6 = dm(i_delay_ptr);
L6 = %$i_delay_line;
M6 = -1;
dm(i6,m6) = mx0;
dm(i_delay_ptr) = i6;
L6 = 0;
rts;

.endmod;

Listing 2.25 1Q Generator Routine (1Q27.DSP)
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{Low Pass Filter I component only
{Analog Devices
{DSP Applications
{
INPUTS:
MX0 = I Value

OUTPUTS:
dm(I_LPF) = I filter output

USAGE:
MxX0, Mx1, MY0O, MR, I3, I7, L3, L7

N e e e e N W R N
L A IR e S e B e el ad

.module/boot=0/ram PSF_MOD;

.external i_delay_line;

.external i_delay_ptr;

.external i_coef_line;

.external i_coef_ptr;

.external i_output;

.entry PSF;

PSF:

{Initialize DAGs }
L0 = %i_delay_line;
L4 %i_coef_line;
I0 = dm(i_delay_ptr);
I4 = dm(i_coef_ptr);
modify (i0, ml) ; {Point to newest data value
mé = 4; {Interpolate by factor of 4
{I filter
mr = 0, mx0 = dm(iO,ml); {load first data word
myO0 = pm(i4,mé); {load first coefficient
cntr = 3;
do i_loop until ce;
i_loop:

mr = mr+mx0*my0(SS), mx0 = dm(i0,ml), my0 = pm(id,m6) ;
mr = mr+mx0*myO0 (RND) ;
if mv sat mr;
dm(I_output) = mrl;
I4 = dm(i_coef_ptr); {Point to next set of coefficients }
modify(id,m5);
dm(i_coef_ptr) = I4;
LO = 0;
L4 = 0;
rts;

[ o

.endmod;

Listing 2.26 Pulse Shape Filter Routine (PSF.DSP)
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.MODULE/ram/boot=0

{

INPUTS:

OUTPUTS:

}

.external
.external

.ENTRY
rand:

rand_sub;

Modems 2

Linear Congruence Uniform Random Number Generator

dm (Seed_hi)
dm (Seed_1lo)

I

LSW of

ay0 = random number;

MSW of seed value
seed value

dm(Seed_hi) = MSW of updated seed value
dm(Seed_lo) = LSW of updated seed value

seed_hi;
seed_lo;

rand;

MY1=25;

MY0=26125;

srl = dm(seed_hi);
sr0 = dm(seed_lo);
mr=sr0*myl (uu) ;
mr=mr+srl*my0 (uu) ;
mr2=mrl;

mrl=mro0;

{mr2=si;}
mrO=h#fffe;
mr=mr+sr0*my0 (uu) ;
sr=ashift mr2 by 15

sr=sr or lshift mrl by -1 (hi);
sr=sr or lshift mr0 by -1 (lo);
dm(seed_hi) = sril;

dm(seed_lo) = sr0;

ay0 = sril;

rts;

.endmod;

{Upper half of a}
{Lower half of a}

{A(HI) *X(LO)}
{A(HI)*X(LO) + A(LO)*X(HI)}

{C=32767,
{ (ABOVE)

LEFT-SHIFTED BY 1}
+ A(LO)*X(LO) + C}

{RIGHT-SHIFT BY 1}

Listing 2.27 Random Number Generator Routine (RAND.DSP)
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{
{ INPUTS:
{ dm(i_lpf) = I LPF output
{ dm(qg_lpf) = Q LPF output
{
{ OUTPUTS:
{ dm(result) = output value
{
{ USAGE:
{ 14, M6, M7, MX0, MYO, MR, SR
{
.var/pm/ram/circ cosine[1l6];
.var/dm/ram cos_ptr;
.var/dm/ram output;
.external i_lpf;
.external a_lpf;
.init cosine: <cosval.dat>;
.init cos_ptr: “cosine;
.entry modulator;
MODULATOR:
cntr = 6;
do mod_loop until ce;
i4 = dm(cos_ptr);
m6 = -4;
m7 = 7;
L4 = %cosine;
mx0 = pm(i4,m6);
myO = dm(i_1lpf);
mr = mx0*my0 (ss), mxO=pm(i4,m7);
my0 = dm(g_lpf);
mr = mr + mx0*myO (rnd);
dm(cos_ptr) = i4;
sr = ashift mr2 by -1 (HI);
sr = sr or lshift mrl by -1 (lo);
mod_loop:
dm(output) = sr0;
L4 = 0;
rts;
.endmod;

.module/ram/boot=0

{Modulate and sum signals

MODULATE_MOD;

{Cosine Table
{Current Pointer to Cosine Table
{Output Value

{Initialize DAGs

{Read Cosine, point to sine
{Read I value
{cos (k) *I(k),
{Read Q Value
{-Q * Sine

{Save cosine Pntr

{ Scale output by 1/2

get -sin

Listing 2.28 Signal Modulation Routine (AODULATE.DSP)
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2.7.2 V.29 Transmitter

The CCITT Recommendation V.29 is a 9600 bits per second modem
standard for data transmission over the general switched telephone
network. The specification defines the following characteristics:

¢ Data rate of 9600 bits /s with 8-phase differentially encoded
modulation

¢ Fallback rates of 7200 and 4800 bits/s

® Provision for backward channel with a modulation rate of 75 bauds
¢ An adaptive equalizer in the receiver

¢ The carrier frequency is 1700 Hz + 1 Hz

CCITT also specifies a raised cosine filter on the transmitter and the
receiver, a data scrambler, the phase encoding and the turn on sequence.

The data stream to be transmitted is first scrambled to randomize the data.
The data scrambler has a generating polynomial of the form:

1+x B +x>3

The scrambled data is divided into for bits (quadbits). The first bit (Q1) is
used to determine the signal amplitude and the remaining three bits (Q2,
Q3, and Q4) are encoded as a phase change relative to the phase of the
preceding word transmitted. Table 2.7 and Figure 2.37 show the phase
change table and the V.29 8-point constellation.

Q2 Q3 Q4 Phase Change
00
45°
90°
135°
180°
225°
270°
315°

RFRRROOOO
CORRREHOO
R OORROOM

Table 2.7 8-Point V.29 Phase Changes
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270°
Figure 2.37 V.29 Constellation

The output of the signal mapping is interpolated to a 9.6 kHz sample rate
and pulse-shaped filtered to assure zero inter-symbol interference. The
signal is then modulated onto a 1700 Hz carrier and then sent to the DAC
for transmission.

The 7200 bits per second fallback mode is similar to the 9600 bits per

second mode. The scrambled data is divided into groups of three bits
(tribits). Table 2.7 can be used to determine the phase change. The first

90°

135° 45°

180°

225° 315°

270°
Figure 2.38 V.29 Constellation For 7200 bits/s Fallback Mode
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tribit represents Q2 in the Table 2.7 and the next two tribits represent Q3
and Q4 respectively. Q1 is assumed to be zero. Figure 2.38 shows the 8-
point V.29 constellation for the 7200 bits/s fallback mode.

The 4800 bits per second fallback mode is similar to the 4800 bits per
second mode. The scrambled data stream is divided into groups of two
bits (dibits). Table 2.7 can be used to determine the phase change. The
tribits represent bit Q2 and Q3 in the figure. Bit Q4 in Table 2.7 is the
inversion of the mod 2 sum of the two data bits and Q1 is assumed to be
zero. Figure 2.39 shows the constellation for this mode.

900

180° L ® 0°

270°
Figure 2.39 V.29 Constellation For 4800 bits/s Fallback Mode

2
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{Main routine for V.29 ter Modem
{Analog Devices
{DSP Applications

{
{ 2/20/91 Start Date
.module/boot=0/ram/abs=0 29_MOD;

[ ]

{————————External Function Declaration
.external getl;

.external scramble;

.external IQ;

.external psf;

.external rand;

{—————Global Variable Declaration
{For baud/sample count

.var/dm/ram sample_count; {Number of samples until next baud
{Default is 3 samples between each baud
{For Scrambler

.var/dm/ram seed_hi; {Seeds for random number generator
.var/dm/ram seed_lo;
.var/dm/ram quad_bit; {next bit to transmit
.var/dm/ram bit_count; {Number of bits left in current word
.var/dm/ram/circ buffer[23]; {Scrambler Delay Buffer
.var/dm buf_ptr2; {Pointer to y(n-18) buffer value
.var/dm buf_ptr3; {Pointer to y(n-23) buffer value
{For IQ Generator

.var/pm/ram delta_phi[8]; {Quadbit phase change table
.var/dm/ram phi_value; {Current phi value
.var/pm/ram I_table_0[8]; {Tables for IQ Output Values
.var/pm/ram Q_table_0[8];
.var/pm/ram I_table_1[81];
.var/pm/ram Q table_1(8];
.var/dm/ram fallback_mode; {0=9600bps, 3=7200bps, 6=4800bps
.var/dm/ram fallback_count; {Number of bits to scramble

{For Pulse Shaped FIlters
.var/dm/ram/circ i_delay_line[5]; {Data Delay line for I channel PSF
.var/dm/ram i_delay_ptr; {Oldest value in delay line
.var/pm/ram/circ i_coef_line[17]; {Coefficients for I challen PSF
.init i_coef_line: <17.dat>;
.var/dm/ram i_coef_ptr; {Last Coeff read by PSF
.var/dm/ram i_psf_output; {Last output value of PSF

{For DAC Outputs
.var/dm/ram sync; {Sync value for DAC
.var/dm/ram i_output; {Pulse shaped filter output value
.var/dm/ram i_value; {IQ section I output
.var/dm/ram g _value; {IQ section Q output

144
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.init delta_phi:

.init I_table_1:

.init Q_table_1:

.init I_table_0:

.init Q_table_0:

.port

.port

.port

.port

.port

.global
.global
.global
.global
.global
.global
.global
.global
.global
.global
.global
.global
.global
.global
.global
.global
.global
.global
.global
.global
.global
.global
.global

Modems 2

0x000200, 0x000000, 0x000400, 0x000600,

0x000C00, 0x000E00, 0x000A00, 0x000800;

Ox7£££00, Ox5bff00, 0x000000, 0xa40000,

0x800000, 0xa40000, 0x000000, Ox5bLff00;

0x000000, Ox5bff00, 0x7f££f00,
0x000000, 0xa40000, 0x800000,

0x4c0000, 0x1e0000, 0x000000,

0x5b£f£00,
0xa40000;

0xel0000,

0xb30000, 0xel0000, 0x000000, 0x1e0000;

0x000000, 0x1e0000, 0x4c0000, 0x1e0000,

0x000000, 0xel0000, 0xb30000, 0xel0000;

Ports and Global
write_dacO;
write_dacl;
write_dac2;
write_dac3;
load_dac;
delta_phi;
phi_value;
I_table_1;
Q_table_1;
I_table_0;
Q_table_0;
buffer;
buf_ptr2;
buf_ptr3;
quad_bit;
bit_count;
fallback_mode;
i_delay_line;
i_delay_ptr;
i_coef_line;
i_coef_ptr;
i_psf_output;
sync;
i_output;
i_value;
qg_value;
seed_hi;
seed_lo;

(listing continues on next page)
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{
RESETV:

IRQ2V:
HIPWV:
HIPRV:
SPRTOT:
SPRTOR:
IRQ1V:

IRQOV:
TIMERV:

{
start:

fevr:

{

Modems

Interrupt Vectors

jump start; {Reset Vector

rti; rti; rti;

jump set_fall_back; {IRQ2 Vector

rti; rti; rti;

rti; rti; rti; rti; {Hip Write Interrupt Vector
rti; rti; rti; rti; {Hip Read Interrupt Vector
rti; rti; rti; rti; {Sport0 Transmit Interrupt Vector
jump next_output; {Generate Next Sample

rti; rti; rti;

rti; rti; rti; rti; {IRQ1 Interrupt Vector

rti; rti; rti; rti; {IRQO0 Interrupt Vector

jump set_fall_back; {Timer Interrupt Vector

rti; rti; rti;

Main Code Starts Here

call V29_INIT; {Initialize ADSP-2101 Dags and Sports
ena timer;

ax0 = 0x101f; {Enable SPORTO

dm(0x3fff) = ax0;

imask = 0x88; {Enable Timer, Sport0,IRQ2 Interrupts
idle; {Wait for Interrupt

jump fevr;

MAIN ROUTINE

next_output:
{This interrupt routine is executed every 8 kHz.
{One sample is output to codec and a new Baud is calculate if
{interrupt occurs at baud rate

146

{Output values to the DAC
ax0 = dm(i_value);
dm(write_dac0) = ax0;
ax0 = dm(g_value);

dm(write_dacl) = ax0;
ax0 = dm(sync);
dm(write_dac2) = ax0;

si = dm(i_output);

sr = ashift si by -2 (lo);
dm(write_dac3) = sr0;
dm(load_dac) = sr0;

tx0 = sr0;

{Check if new baud should be calculated

ax0 = dm(sample_count) ;

ay0 = 1;

myl = Ox7fff; {Set sync value for new sample
dm(sync) = myl;

ar = ax0 - ay0;

dm(sample_count) = ar;

if gt jump next_sample;



next_baud:

Modems

i4 = "i_coef_line; {Reset Coefficient Pointer
dm(i_coef_ptr) = i4;
ax0 = 4; {Reset sample counter
dm(sample_count) = ax0;
si = 0; {Zero SI Register
cntr = dm(fallback_count) ;
do scram_bit until ce;
call getl; {Get next N data bits to be transmitted

call scramble;
scram_bit:

ax0 = dm(fallback_mode) ;

ay0 = 0x06;
ar = ax0 - ayO0;
if ne jump not4S8;

mode48:
sr = 1lshift si by -
ay0 = si;
ar = sr0 xor ayO0;
ar = not ar;
ayl = 1;
ar = ar and ayl;
sr = 1lshift si by 1
sr = sr or 1lshift a
si = sr0;

not48:
call 1Q;
myl = 0x8000;
dm(sync) = myl;

jump next_sample;
next_sample:

call psf;
{ call modulator;
done: rti;

{———Change Fallback
set_fall_back:

{Test if in 4800 bps mode

{Calculate Q4 =
{sr0 = Q2

inv(Q3 + Q2)
1(lo);

{AY1l must be preset to 1
(lo); {Store output in si
r by 0 (lo);

{Calculate delta phi,phase sum,I and Q
{Set sync value for new baud

{Low Pass Filter I and Q components
{Output values to the DAC
Modulate and sum signals

Mode

{store i4 in temporary location
{store m7 in temporary location
{store L4 in temporary location

{CASE Statement

ena sec_reg;

ax0 = dm(fallback_mode) ;
mx0 = i4;

mxl = m4;

my0 = L4;

14 = 0;

m4 = ~jump_table;

i4 = ax0;

modify (i4,m4);

jump (i4);

(listing continues on next page)
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jump_table:

{Current fallback
ay0 = 0x03;
ax0 0x03;
jump case_end;

{Current fallback
ay0 0x06;
ax0 0x02;
jump case_end;

{Current
i4
14
m4 1;
ax0 0;
dm (bit_count)
cntr $buffer;
do z2 until ce;
dm(i4,m4) ax0;
ay0 0x0;
ax0 0x04;
jump case_end;
case_end:

~“buffer;
$buffer;

ax0;

z2:

9600 bps,

7200 bps,

fallback = 4800 bps,

change to 7200bps

4800bps

change to

change to
{Reset Delay

7200bps
Buffer and Data Pointers

dm(fallback_count) = ax0;
dm(fallback_mode) = ay0;
ax0 = 0; {Zero Phi Value
dm (phi_value) = ax0;
i4 = mx0; {Restore 14
m4 = mxl; {Restore m7
L4 = myO; {Restore L4
rti;
{ Initialization for V.29
V29_INIT:
{ SPORT INIT
ax0 = 0x02; {SCLKDIV = 2.048 MHz
dm(0x3f£f5) = ax0;
ax0 = 213; {RFSDIV = 639 for 9600
dm(0x3ff4) = ax0;
ax0 = 0x6b27; {Internal SCLK, Frame Syncs
dm (0x3£ff6) = ax0;
Wait States
ax0 = Oxffff;
dm (0x3ffe) = ax0;
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zl:

ax0

ax0

dloop:

{
i0 = "“buffer;
10 = sbuffer;
ml = 1;
ax0 = 0;

cntr = $buffer;

do zl until ce;

dm(i0,ml) = ax0;
{

dm(quad_bit) = ax0;
dm(bit_count) = ax0;
dm(phi_value) = ax0;

Variable Initializations

Modems 2

Data Buffer Inits

dm(sample_count) = ax0;

ax0 = 6;

dm(fallback_mode) = ax0;

ax0 = 2;
dm(fallback_count) =
ax0 = "buffer+17;
dm(buf_ptr2) = ax0;
ax0 = “buffer+22;
dm(buf_ptr3) = ax0;
ax0 = Oxabas;
dm(seed_hi) = ax0;
ax0 = 0x1234;
dm(seed_lo) = ax0;

{
i0 = "i_coef_line;
dm(i_coef_ptr) = i0;
i0 = ~i_delay_line;
dm(i_delay_ptr) = 1i0;
10 = %i_delay_line;
m0 = 1;
ax0 = 0;
cntr = %i_delay_line;
do dloop until ce;

dm(i0,m0) = ax0;

ax0 = Ox7fff;

dm(sync) = ax0;
{

= Oxffff;

dm (0x3£f£d)
dm(0x3ffc)
dm (0x3ffb)

ax0;
ax0;
ax0;

o n

ax0;

————Pulse Shaped Filter Inits

Timer Init

(listing continues on next page)

149



2 Modems

{——DAG INIT

{Init MO,M1,M5,M5

{Set All L registers to zero

-
[y
L | | | | 1 1 1 O [ O T 1}

[eNeoNoNoNoNoNoNoN JNel o]

Ne Se Ne Ne we Se we o Se Se Se Ne e

{ END INITIALIZATION
.endmod;

Listing 2.29 Main V.29 Routine (MAIN29.DSP)
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{GET2 routine for v.29 Modem
{Analog Devices

{DSP Applications

{

.module/boot=0/ram getlmod;
{Get 1 data bit to be transmitted

P e e el

INPUTS:
dm(data_word) 16 bit words for transmission
dm(bit_count) number of bits left in word

m0 = 0
ml =1
m4d =0
m5 = 1
OUTPUTS:

dm(quad_bit): bit to transmit

USAGE:
AXO0, AYO0, AR, SI, SR

P A R AR A AR s R A P A e e
M e M e M e A e e el e e e o o o

{Global Variable Declaration

e

.external quad_bit; {bit to transmit
.external bit_count; {number of bits left in word }
.port in_port;
{Local Variable Declaration }
.var/dm/ram data_word; {Data word to be transmitted }
.external rand;
{ Code Start }
.entry GET1;
GET1:
ay0 = dm(bit_count); {If bit_count is zero }
ar = pass ay0; {load new word }
if ne jump dec_count;
ay0 = 0xcl23; {Load new data word here }
call rand;
dm(data_word) = ay0;
ay0 = 16;
dec_count: ar ay0 -1; {Decrement counter }

dm(bit_count) = ar;

get_bit:
sr0 = dm(data_word) ; {Get next bit }
ay0 = 0x01;
ar = sr0 and ay0;
dm(quad_bit) = ar;
sr = 1lshift sr0 by -1 (lo);
dm(data_word) = sr0; {Write data_word for next time }
rts;
.endmod;

Listing 2.30 Data Acquisition Routine (GET29.DSP) 151
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.module/boot=0/ram SCRAMBLE_MOD;

{Analog Devices

{DSP Applications

{

{ 2/20/91 Start Date

{This module performs v.29 scrambling on one input bit

{

{The scrambler generating polynomial is xin + y(n-18) + y(n-23)
{v.29 specifies additional data pattarns on startup.

{This has not been implemented.

{
{ INPUTS:
{ dm (quad_bit) = bit to be scrambled
{ si = partial quad bit
{
{ OUTPUTS:
{ si = scrambled output bit
{ si 1s left shifted by 1 and the new bit is put in b0
{
{ USAGE:
{ I0 = ~buffer
{ I1 = Y(n-18)
{ I2 = y(n-23)
{Local variable Declarations
.external buffer; {Delay Buffer
.external buf_ptr2; {Pointer to y(n-18) buffer value
.external buf_ptr3; {Pointer to y(n-23) buffer value
.external quad_bit;
.entry SCRAMBLE;
SCRAMBLE:
il = dm(buf_ptr2); {Get Pointer values
i2 = dm{buf_ptr3);
m3 = -1;
L1l = $buffer; {Set circular buffer registers
L2 = %$buffer;
ax0 = dm(quad_bit); {Get next bit to scramble
ay0 = dm(il,m3); {y (n-18)
ar = ax0 xor ay0, ayO=dm(i2,m0); {y(n-23)
ar = ar xor ay0; { = y(n)
dm(i2,m3) = ax0; {Store Oldest Value
sr = lshift si by 1 (lo); {Store output in sr0
sr = sr or lshift ar by 0 (lo);
si = sr0;
dm (buf_ptr2) = il; {Save buffer pointers
dm(buf_ptr3) = i2;
Ll = 0; {Clear L registers
L2 = 0;
rts;
.endmod;

152 Listing 2.31 Data Scrambler Routine (SCRAM29.DSP)
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{Analog Devices
{DSP aApplications

{
{ 2/20/91

Start Date

.module/boot=0/ram PHI_MOD;
{Calculate delta phi, phase sum, I and Q

e e s R N Nan T e Tae M W W e W)

.external
.external
.external
.external
.external
.external
.external
.external
.external
.external
.external
.external
.entry
IQ:
{Look up

INPUTS:

SI = QuadBit Value in four LSBs
Q1 (Amplitude Bit) is in b3
Q2-4 (Phase Change) is b b 2-0
dm[PHI] = current Phi Value

OUTPUTS:
MX0 = I Value
MX1 = Q Value
USAGE:

I3, M3, AR, AXO0, AYO

Q_table_0;
I_table_0;
Q_table_1;
I_table_1;
delta_phi;
phi_value;
i_coef_line;
i_coef_ptr;
i_delay_line;
i_delay_ptr;
i_value;
_value;

I1Q;

Delta_phi value and add to phi for new phase
axl = si;
ay0 = 0x07;

ar = axl and ayo0;
I7 = ~delta_phi;
m7 = ar;

modify (i7, m7);

ax0 = dm(phi_value);
ay0 = pm(i7,m4) ;

ar = ax0 + ay0;

ayl = 0x0f;

ar = ar and ayl;
dm(phi_value) = ar;

(listing continues on next page)
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{Look

{To find I/Q values, use phi/2 as offset into table

{Look

nzamp:

zamp:

lookup:

up I and Q components

sr = 1lshift ar by -1 (lo);

at Amplitude bit and chose lookup table

ay0 = 0x08;

ar = axl and ayO0;
if eq jump zamp;
I6 = ~I_table_1;
I7 = ~Q_table_1;
Jjump lookup;

I6 = "I_table_0;

I7 = ~Q_table_0;

m7 = sr0;
modify (I6,M7); {16
modify (I7,M7); {17

mx0 = pm(i6,m4) ;
mxl = pm(i7,m4);

{Write new I value to PSF Delay Line

.endmod;

16 = dm(i_delay_ptr);
L6 %i_delay_line;
M6 -1;

dm(i6,m6) = mx0;
dm(i_delay_ptr) = i6;

o

L6 = 0;

{Write IQ values for DAC
dm(i_value) = mx1;
dm(g_value) = mx0;

rts;

Listing 2.32 1Q Generator Routine (1029.DSP)

{if zero amplitude bit is zero }
{amplitude bit is equal to one }

{amplitude bit is equal to zero}

I value
Q Value
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Linear Predictive Coding

3.1 OVERVIEW

Digital Signal Processing Applications Using the ADSP-2100 Family, Volume
1, contains a chapter about Linear Predictive Coding. That chapter
(Chapter 10) discusses the following topics:

LPC theory

Correlation functions (auto-correlation and cross-correlation)
Levinson-Durbin Recursion

Pitch Detection

Also, the chapter includes program listings and subroutines for the
following applications:

Correlation subroutine
LPC coefficient calculation
Pitch Detection

LPC synthesis

After Volume 1 was published, additional application programs for 7.8
kbits/s and 2.4 kbits/s LPCwere developed to build on the usefulness of
the information included in that text. This chapter introduces those
applications.

3.2 LINEAR PREDICTION

Linear Predictive Coding is a speech coding technique that models the
human vocal tract. According to the model, the human body produces
two basic types of sounds: voiced and unvoiced. If the vocal folds vibrate
when air from the lungs is forced through them, voiced sound is
produced. Unvoiced sound is produced by the tongue, lips, teeth, and
mouth.

For voiced and unvoiced sounds, the vocal tract can be modeled as a series
of cylinders with different radii and different amounts of energy at the
boundaries between the cylinders. Mathematically, you can represent this
model as a linear filter excited by a fundamental frequency (voiced sound)
or random noise (unvoiced sound).
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3 Linear Predictive Coding

The goal of linear predictive analysis is to derive the necessary parameters
for reconstructing the sound: voiced /unvoiced decision, fundamental
frequency, system gain, and the coefficients that describe the filter. The
objective of Linear Predictive Coding (LPC) is to predict the next output of
the system based on previous outputs and inputs. This is an effective
coding technique because speech is a highly correlated signal when
considered during a short interval of time (frame length). That is, given a
sequence of speech samples, subsequent speech samples can be predicted
with a minimum of error over a short period of time.

LPC relies on a technique that uses a linear combination of previous
outputs, past inputs, and an input excitation. The filter equation or speech
output, s(n), can be represented as:

s(n)=-Y a,s(n-k)+GY bu(n-j),b0=1
k=1 j=0

where s() is the speech sequence and u() is the excitation sequence.

The resulting synthesis filter has the following domain representation:

H(z) = 2L = G2 [y
(@) u(z) (1 +a; z_i)

To synthesize sound with the model described above, you must specify
the complete parameter set for the synthesis fiiter. Table 3.1 defines these

parameters.
Parameter Symbol
Filter Coefficients ay, bk
Gain G
Excitation
Voiced/Unvoiced 1/0
Pitch Period P

Table 3.1 Parameter Set For The Sound Synthesis Model
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3.3 7.8 kbits/s LPC

The 7.8 kbits/s LPC (which is of higher speech quality) is derived by using
a data frame size of 180 samples sampled at 8 kSa/s. For each frame, the
analysis section generates ten 16-bit coefficients and an additional 16-bit
word containing the gain and pitch period. Therefore, the bit rate is
derived by:

(11 words)*(16 bits / word)
(180 samples)

Bit Rate = *(125 ps / sample) = 7822 bits / s (7.8 kbits / s)

Listing 3.1 shows the 7.8 kbits/s LPC Routine. This routine calls several
subroutines listed in Section 3.4, “LPC Subroutines.”

.module/boot=3/abs=0 1pc7k8_through;

{ LPC7k8.DSP - talk through, encoding and decoding using LPC.

Input: Speech samples from microphone (using autobuffering) via sport0
Ouput: Speech samples to speeaker (using autobuffering) via sport0
Modules used:

- pre_emphasize_speech (PREEMP.DSP)
- gain_calculation (GAIN.DSP)
- autocorrelation_of_speech (AUTOCOR.DSP)
- durbin_double/single (DURBIN2.DSP/DURBIN.DSP)
- pitch_detection (PITCH.DSP)
- lpc_sync_synth (SSYNTH.DSP)
- de_emphasize_speech (DEEMP.DSP)
- constant header (LPC.H)
Description:

This program implements a shell to demonstrate the LPC algorithm on an EZ-LAB
board. Speech is autobuffered in from the codec, compressed, decompressed and
autobuffered back out to the codec, providing a “talk-through” program.

NOTE: The framesyncs of sport0 (TFSO & RFS0O) SHOULD NOT be tied together EXTERNALY!!
(On the EZ-LAB’s serial connector it is pins 4 & 5)

}

{include constant definitions}
#include “lpc.h”;

{Buffers used by autobuffering, input swaps between analys_buf & receive_buf,
whereas output swaps between synth_buf & transit_buf}

.var/dm/ram/circ analys_buf [FRAME_LENGTH] ;

.var/dm/ram/circ receive_buf [FRAME_LENGTH] ;

{The LPC-parameters are stored in trans_line to “simulate” transmission}
.var/dm/ram trans_line[WORDS_PR_LPCFRAME] ;

(listing continues on next page)
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3 Linear Predictive Coding

{Pointers to the buffers that are NOT currently being used by autobuffering}
.var/dm/ram p2_analysis,p2_synth;

{Intermediate variables}

.var/pm/ram autocor_speech [FRAME_LENGTH] ;
.var/dm/ram/circ kI[N];
.var/dm/ram pitch, gain;
.var/dm/ram lpc_flag:;
.external pre_emph;
.external calc_gain;
.external a_correlate;
.external levinson;
.external detect_pitch;
.external clear_filter;
.external synthesis;
.external de_emph;
{load interrupt vectors}
jump start_test; nop; nop; nop; {reset interrupt}
rti; nop; nop; nop;
rti; rti; nop; nop; {sport0 transmit}
call rcv_ir; rti; nop; nop; {sport0 receive}
rti; nop; nop; nop;
rti; nop; nop; nop;
rti; nop; nop; nop;
change_demo:
gd: if not flag_in jump gd;
ay0 = 0x0338; {set bootforce bit}
dm(0x3fff) = ayO0;
nop;
rts;
start_test:
{configure sports etc.}
ax0 = 0x0000;
dm(0x3ffe) = ax0; {dm waits = 0}
ax0 = 0x6327;
dm(0x3ff6) = ax0; {set sport0 control reg}
ax0 = 2;
dm(0x3ff5) = ax0; {set sclkfreq to 2.048 Mhz}
ax0 = 255;
dm(0x3ff4) = ax0; {set rclkfreq to 64 khz}
{Default register values, these values can always be asumed, and must
be reset if altered}
10 = 0; 11 = 0; 12 = 0; 13 = 0;
14 = 0; 15 = 0; 16 = 0; 17 = 0;
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{DEDICATED REGISTERS. These registers must NOT be altered by any routine at any
time! (used by autobuffering)}
m0 = 0; md = 0;

[

ml 1; m5 = 1;
i3 = “receive_buf;
13 = %receive_buf;

{Setup and clear intermediate buffers}
i6 = "analys_buf;
16 = 0; dm(p2_analysis) = i6;

|

ena sec_reg;
ax0 = FRAME_LENGTH;
af = pass ax0;

dis sec_reg;

ax0 = 0;
dm(lpc_flag) = ax0;

{clear the synthesis filter}
call clear_filter;

{enable sport0}
ax0 = 0x1038;
dm(0x3fff) = ax0;

{enable sport0}
icntl = b#00111;
imask = b#001000; {Enable receive}
wait: idle;

if not flag_in call change_demo;
ax0 = dm(lpc_flag);

ar = pass ax0;
if eq jump wait;
ax0 = 0;

dm(lpc_flag) = ax0;

{Parameters: i0 = p2_analysis (-> speech)

Returns: filtered speech}
i0 = dm(p2_analysis);
10 = 0;

call pre_emph;

(listing continues on next page)
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3 Linear Predictive Coding

{Parameters: 10 = p2_analysis (-> speech)
Returns: srl = gain}

i0 = dm(p2_analysis);

10 = 0;

call calc_gain;

dm(gain) = srl;
{Parameters: 10 = p2_analysis (-> speech)
Returns: autocor_speech[]}

10 = dm(p2_analysis); 10 = 0;

i6 = “autocor_speech; 16 = 0;

call a_correlate;

{Parameters: 14 -> autocor_speech(])
Returns: i0 -> kI[]}
i4 = ~autocor_speech; 14
10 = *k; 10 = 0;
call levinson;

0;

1]

{Parameters: i0 -> k[], 16 -> autocor_speech|]
Returns: si = pitch}
i0 = ~k; 10 = 0;
i6 = "autocor_speech; 16
call detect_pitch;
dm(pitch) = si;

n

0;

{TRANSMISSION LINE}

{Parameters: axl = pitch, mxl = gain, i0 -> k[]
Returns: i2 -> speech}
i0 = *k; 10 = 0;
il = "k + N - 1; 11 = 0; {store k’s in revers order - }
cntr = 5; {N/2}{required by lattice routine}
m2 = -1;
do reverse_ks until ce;
ay0 = dm(i0,m0);
ayl = dm(il,m0);
dm(i0,ml) = ayl;
reverse_ks: dm(il,m2) = ayO0;
axl = dm(pitch);
mxl = dm(gain);
il = ~k; 11 = N;
12 = dm(p2_analysis); 12 = 0;
call synthesis;

{Parameters: i0 = p2_analysis (-> speech)
Returns: filtered speech}

i0 = dm(p2_analysis); 10 = 0;

call de_emph;

Jjump wait;
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{End of main routine}

{Autobuffering interrupt routines}

trns_ir:
rts;
rcv_ir:
ena sec_reg;
ax0 = dm(i3,m0) ;
tx0 = ax0;
ax0 = rx0;
dm(i3,ml) = ax0;
af = af - 1;
if gt jump no_lpc; {switch pointers}
ay0 = 1i3;
ayl = dm(p2_analysis);

i3 = ayl; 13 = %receive_buf;
dm(p2_analysis) = ay0;

ax0 = FRAME_LENGTH;

af pass ax0;

ax0 = 1;

dm(lpc_flag) = ax0;

no_1lpc:

dis sec_reg;

rts;

{END of main code}
.endmod;
Listing 3.1 7.8 kbits/s LPC Routine

34 2.4 kbits/s LPC

The speech quality of 2.4 kbits/s LPC is somewhat deminished from the
quality of 7.8 kbits/s LPC, but the compression ration is much higher.
Although the bit rate is more than 3 times slower than 7.8 kbits/s LPC, the
quality is considered acceptable for most applications. The lower bit rate is
achieved by reducing the number of bits per frame from 176 (11 words X
16 bits/word) unquantized bits to 54 quantized bits. Therefore, the bit rate
for the 2.4 kbits/s LPC is derived by:

Bit Rate = \iiSEs;In;;I;;; 2#(125 us / sample) = 2400 bits / s (2.4 kbits / )

The quantization routines are called only by the 2.4 kbits/s version of the
code (main module is LPC2K4.DSP); they are called encode.dsp and
decode.dsp.
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Listing 3.2 shows the 2.4 kbits/s LPC Routine. This routine calls the
subroutines listed in Section 3.4, “LPC Subroutines.”

.module/boot=4/abs=0 1lpc2k4_through;
{ LPC2k4.DSP - talk through, encoding and decoding using LPC.
Input: Speech samples from microphone (using autobuffering) via sport0
Ouput : Speech samples to speeaker (using autobuffering) via sport0
Modules used:
- pre_emphasize_speech
- gain_calculation
- autocorrelation_of_speech AUTOCOR.DSP)
- durbin_double/single DURBIN2 .DSP/DURBIN.DSP)

(PREEMP.DSP)
(
(
(
- pitch_detection (PITCH.DSP)
(
(
(

GAIN.DSP)

- lpc_sync_synth SSYNTH.DSP)
- de_emphasize_speech DEEMP.DSP)
- constant header LPC.H)

Description:
This program implements a shell to demonstrate the LPC algorithm on an EZ-LAB
board. Speech is autobuffered in from the codec, compressed, decompressed and
autobuffered back out to the codec, providing a “talk-through” program.

NOTE: The framesyncs of sport0 (TFSO & RFS0O) SHOULD NOT be tied together EXTERNALY!!
(On the EZ-LAB’s seriel connector it is pins 4 & 5)

}

{include constant definitions}
#include “lpc.h”;

{Buffers used by autobuffering, input swaps between analys_buf & receive_buf,
whereas output swaps between synth buf & transit_buf}

.var/dm/ram/circ analys_buf [FRAME_LENGTH] ;

.var/dm/ram/circ receive_buf [FRAME_LENGTH] ;

{The LPC-parameters are stored in trans_line to “simulate” transmission}
.var/dm/ram trans_line [WORDS_PR_LPCFRAME] ;

{Pointers to the buffers that are NOT currently being used by autobuffering}
.var/dm/ram p2_analysis,p2_synth;

{Intermediate variables}

.var/pm/ram autocor_speech [FRAME_LENGTH] ;
.var/dm/ram/circ kI[N];

.var/dm/ram pitch, gain;

.var/dm/ram lpc_flag;

.external pre_emph;

.external calc_gain;

.external a_correlate;

.external levinson;
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.external detect_pitch;
.external encode;
.external decode;
.external clear_filter;
.external synthesis;
.external de_emph;

load interrupt vectors}
jump start_test; nop; nop; nop;

rti; nop; nop; nop;
rti; rti; nop; nop;
call rcv_ir; rti; nop; nop;
rti; nop; nop; nop;
rti; nop; nop; nop;
rti; nop; nop; nop;

change_demo:
gd: if not flag_in jump gd;

ay0 = 0x0238;
dm(0x3fff) = ay0;
nop;

rts;

start_test:
{configure sports etc.}

ax0 = 0x0000;
dm(0x3ffe) = ax0;
ax0 = 0x6327;
dm(0x3ff6) = ax0;
ax0 = 2;
dm(0x3£f£5) = ax0;
ax0 = 255;
dm(0x3£ff4d) = ax0;

{Default register values, these values can

be reset if altered}
10 = 0; 11 = 0; 12 = 0; 13 = 0;
14 = 0; 15 = 0; 16 = 0; 17 = 0;

{DEDICATED REGISTERS. These registers must

any time! (used by autobuffering)}
mO = 0; md4d = 0;
ml = 1; mb = 1;
i3 = “receive_buf;

13 $receive_buf;

{reset interrupt}

{sport0 transmit}
{sport0 receive}

{set bootforce bit}

{dm waits = 0}

{set sport0 control reg}
{set sclkfreq to 2.048 Mhz}
{set rclkfreq to 64 khz}

always be asumed, and must

NOT be altered by any routine at

(listing continues on next page)
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3 Linear Predictive Coding

{Setup and clear intermediate buffers}
i6 = ~analys_buf;
16 = 0; dm(p2_analysis) = i6;

ena sec_reg;
ax0 FRAME_LENGTH;

af pass ax0;
dis sec_reg;

nn

ax0 = 0;
dm(lpc_flag) = ax0;

{clear the synthesis filter}
call clear_filter;

{enable sport0}
ax0 = 0x1038;
dm(0x3fff) = ax0;
{enable sport0}

icntl = b#00111;
imask = b#001000; {Enable receive}

wait: idle;
if not flag_in call change_demo;

ax0 = dm(lpc_£flag):;
ar = pass ax0;
if eq jump wait;

ax0 = 0;
dm(lpc_flag) = ax0;

{Parameters: i0 = p2_analysis (-> speech)

Returns: filtered speech}
i0 = dm(p2_analysis);
10 = 0;

call pre_emph;

{Parameters: i0 p2_analysis (-> speech)

Returns: srl gain}
i0 = dm(p2_analysis);
10 = 0;

call calc_gain;
dm(gain) = srl;
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{Parameters: i0 = p2_analysis (-> speech)
Returns: autocor_speech([]}

i0 = dm(p2_analysis); 10 = 0;

i6 = "~autocor_speech; 16 = 0;

call a_correlate;

{Parameters: i4 -> autocor_speech[])

Returns: i0 -> k[1}
i4 = "“autocor_speech;
14 = 0;
i0 = "k;

10 = 0;
call levinson;

{Parameters: i0 -> kI[],
i6 -> autocor_speechl[]

Returns: si = pitch}
i0 = "k;
10 = 0;

i6 = "“autocor_speech; 16 = 0;
call detect_pitch;
dm(pitch) = si;

{Parameters: il -> k[],
ar = pitch,
si = gain

Returns: parameters encoded ar = pitch,
si = gain}

il = ~k; 11 = 0;
ar = dm(pitch);
si = dm(gain);

call encode;
dm(pitch) = ar;
dm(gain) = si;

{TRANSMISSION LINE}

{Parameters: il -> k[],
si = pitch,
ax0 = gain

Returns: k’s decoded

si = pitch,

ax0 = gain}

“k; 11 = 0;

si dm(pitch);

ax0 = dm(gain) ;

call decode;

dm(pitch)

dm(gain)

il

o n

si;
ax0;

(listing continues on next page)
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168

{Parameters: axl = pitch,
mxl = gain,
i0 -> k[]
Returns: 12 -> speech}
10 = "k;
10 = 0;
il = "k + N - 1;
11 = 0;
cntr = 5;
m2 = -1;

do reverse_ks until ce;
ay0 = dm(i0,m0) ;
ayl = dm(il,m0);
dm(i0,ml) = ayl;

7

(
reverse_ks: dm(il,m2) =
)

axl = dm(pitch
mxl = dm(gain);
il = *~k;
11 = N;

i2 = dm(p2_analysis); 12

call synthesis;

{Parameters: 10 = p2_analysis
filtered speech}

Returns:
i0 = dm(p2_analysis);
call de_emph;

jump wait;

{End of main routine}

{autobuffering interrupt routines}

trns_ir:
rts;
rcv_ir:

ena sec_reg;
ax0 = dm(i3,m0);
tx0 = ax0;

ax0 = rx0;
dm(i3,ml) = ax0;
af = af - 1;

if gt jump no_lpc;
{switch pointers}

ay0 = 1i3;

ayl = dm(p2_analysis);
i3 = ayl;

13 = %receive_buf;
dm(p2_analysis) = ay0;

{store k’s in revers order - }
{N/2} {required by lattice routine}

speech)
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ax0
af

FRAME_LENGTH;
pass ax0;

non

ax0 = 1;
dm(lpc_flag) = ax0;
no_Jlpc:

dis sec_reg;
rts;
{END of main code}

.endmod;

Listing 3.2 2.4 kbits/s LPC Routine

3.5 LPC SUBROUTINES

This section contains the subroutines called by the 7.8 and 2.4 kbits/s LPC
routines.

.module/boot=3/boot=4 autocorrelation_of_speech;
{ AUTOCOR.DSP - perform autocorrelation on input speech frame.
INPUT: i0 -> frame of speech (dm)

10 = 0
i6 -> buffer for autocorrelation (pm)
16 = 0

OUTPUT: autocorrelation buffer filled

FUNCTIONS CALLED: None

DESCRIPTION:
First the speech is autoscaled (IN PLACE!!), to avoid overflow.
The autocorrelation is calculated, and normalized so r[0] = 1 (0x7fff).

{include constant and macro definitions}
#include “lpc.h”;

.entry a_correlate;

.external overflow;

{.var/pm/ram/circ copy_of_speech[FRAME_LENGTH]; }

.var/dm p2_speech;
.var/dm p2_autocor_speech;

(listing continues on next page)

169



3 Linear Predictive Coding

a_correlate:

{store pointers for later use}
dm(p2_speech) = i0;
dm (p2_autocor_speech) = i6;

{auto scale input before correlating}
{first: detect largest exp in speech}
{10 -> speech)}
cntr = FRAME_LENGTH;

sb = -16;
do max_speech until ce;
si = dm(i0,ml);

max_speech: sb = expadj si;

{adjust speech input: normalize to largest and then right shift to |AC_SHIFTI|.

(16-|1AC_SHIFT|) format (done in one

correlation}

i0 = dm(p2_speech) ; 10
i5 = dm(p2_autocor_speech); 15
cntr = FRAME_LENGTH;

ax0 = sb;

ay0 = AC_SHIFT;

ar = ay0 - ax0;

se = ar;

do adj_speech until ce;
si = dm(i0,m0) ;
sr = ashift si (hi);
pm(i5,m5) = srl;
adj_speech: dm(i0,ml) = srl;

{do autocorrelation, R[i] = sum_of s[jl*s[i+J]}

shift).

At the same time copy to pm for

{scale down to avoid overflow (worst case)}
{effective scale value}

{NOTE: the counter updating scheme, might cause a ”acces to non-existing memory”

in the simulator/emulator}

i5 = dm(p2_autocor_speech); 15 = 0;
{i6 -> autocor_speech}

i2 = FRAME_LENGTH; 12 = 0;

m2 = -1;

cntr = FRAME_LENGTH;

do corr_loop until ce;

i0 = dm(p2_speech); 10 = 0;

i4 = i5; 14 = 0;

mr=0, myO=pm(i4,m5), mx0=dm(i0,ml);
{j loop}

do cor_data_loop until ce;

{s[i+J1}
{->R[1]}

{i loop}
{->s[J1}
{->s[i+3]1} cntr=i2;

cor_data_loop: mr=mnr+mx0*my0 (ss) ,my0=pm(i4,m5) ,mx0=dm(i0,ml) ;

if mv call overflow;
mx0 = dm(i2,m2), myO = pm(i5,m5);

corr_loop: pm(i6,m5) = mrl;

170
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{Normalize autocorrelation sequence}
{shift sequnece for maximum precision before division}
i5 = dm(p2_autocor_speech); 15 = 0;
cntr = FRAME_LENGTH - 1;
si = pm(i5,m4) ; {R(0)}
se = exp si (hi);
sr = norm si (hi);
pm(i5,m5) = sri; {new R(0)}
do sh_cor until ce; {shift remaining sequence accordingly}
si = pm(i5,m4);
sr = norm si (hi);
sh_cor: pm(i5,m5) = sril;

{calculate R(i)/R(0)}
15 = dm(p2_autocor_speech); 15 = 0;
cntr = FRAME_LENGTH - 1;

ax0 = pm(i5,m4) ; {ax0 = divisor = R(0)}
ay0 = Ox7fff;
pm(i5,m5) = ay0; {new R(0) = 1}
do nrm_cor until ce;
ayl = pm(i5,m4) ; {ayl = MSW of dividend }
ay0 = 0x0000; {ay0 = LSW of dividend}
divide (ax0,ayl) ;
nrm_cor: pm(i5,m5) = ayo0;

rts;

.endmod;

Listing 3.3 AUTOCOR.DSP Subroutine
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.module/boot=4 decode_parameters;

{ DECODE.DSP - decompresses the lpc parameters.

INPUT:
il -> k (reflection coeffs) 11 = 0
si = pitch
ax0 = gain
OUTPUT:
k’s decoded inplace
si = pitch
ax0 = gain

The log coded parameters are decompressed using:

k[i] =
}

#include “lpc.h”

.const DELOG_ORDER = 8;
.var/pm delog_coeffs[2*DELOG_ORDER] ;
.init delog_coeffs: <delog.cff>;
.const LAR_ORDER = 16;
.var/pm lar_coeffs[2*LAR_ORDER];
.init lar_coeffs: <dec.cff>;
.var/dm temp_pitch;
.var/dm temp_gain;
.entry decode;
.external poly_approx;
decode:
{decode}

{si = pitch}

se = -9;

sr = lshift si (lo);
dm(temp_pitch) = sr0;

{ax0 = gain}
srl = ax0;
ar = pass ax0;
if eq jump zero_gain;
myO = 0x0000;
myl = ax0;
ax0 = DELOG_ORDER - 1;
i6 = "~delog_coeffs; 16 = 0;
call poly_approx;
si = mx0;
sr = 1lshift si by 9 (lo);
sr = sr or ashift ar by 9
zero_gain:
dm(temp_gain) = srl;

(hi);
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(10"~ (g[i1*4)+1) /(10" (g[i]1*4)-1)

{Ci 1lsb, Ci msb, Ci-1 1lsb
{scaled down by 512 = 279}

{Ci 1sb, Ci msb, Ci-1 1sb
{scaled down by 1024 = 2710}

{gain 1lsb}
{gain msb}
{logl0 function}

{scale up by 512, comes with the coeff’s}
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cntr = 2 {N};
do dec_k until ce;

my0O = 0x0000; {k 1sb}
myl = dm(il,m0); {k msb}
ax0 = LAR_ORDER - 1;
i6 = "~lar_coeffs; 16 = 0;
call poly_approx; {log area ratio function}
si = mx0;
sr = 1lshift si by 10 (lo); {scale up by 1024}
sr = sr or ashift ar by 10 (hi);

dec_k: dm(il,ml) = srl;
{setup return parameters}
si = dm(temp_pitch);
ax0 = dm(temp_gain);
rts;

.endmod;

Listing 3.4 DECODE.DSP Subroutine
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.module/boot=3/boot=4 de_emphasize_speech;
{ DEEMP.DSP - deemphasizes a speech frame. (filters it)
INPUT:

i0 -> frame of speech

10 = 0

OUTPUT: speech deemphasized
FUNCTIONS CALLED:
None
DESCRIPTION:
Filters speech using: H(z) = 1/(1 - 0.75)
}

{Include constant definitions}
#include “lpc.h”

.entry de_emph;

.external overflow;
.var/dm/ram delay;

de_emph:
{deemphasize}
mx0 = 0x6000; {al = 0.75}

cntr = FRAME_LENGTH;
do filt_speech until ce;

mr = 0;
mrl = dm(i0,m0); {x(n)}
my0 = dm(delay) ; {y(n-1)}

mr = mr + mx0*my0Q (ss);
if mv call overflow;

dm(delay) = mrl; {update delay with y(n)}
filt_speech: dm(i0O,ml) = mrl;

rts;

.endmod;

Listing 3.5 DEEMP.DSP Subroutine

174



Linear Predictive Coding 3

.module/boot=3/boot=4 durbin_single;
{ DURBIN.DSP - single precision Levinso-Durbin routine
INPUT:

i4 -> buffer with autocorrelated speech (pm)

14 = 0
i0 -> buffer for reflection coeffs
10 = 0

OUTPUT: reflection coeffs calculated

mrl = Ep (minimum total squared prediction error
FUNCTIONS CALLED:

None
DESCRIPTON:

The routine implements Durbins recursion method of solving a set of linear
equations forming a Toeplitz matrix. The algorithm in C is as follows:

Where R[] is the autocorrelation, and k[] the reflection coeffs.

e[] is the

total squared error, and a[][] is the predictor coeff matrix (since only the
i‘th and the i+l1’th column is used at any one time, the matrix is implemented
as two (a_old and a_new) columns swapping place after each iteration.

e[0] R([O]

k[1] = R[1] / e[O]
alpha[1]l[1] = k[1]

e[l] = (1 - k[11*k[1]) * e[O0]

for (i=2; i<=N; i++)
begin

k[i] = 0

for (j=1; j<=i-1; J++)

k[i] = k[i] + R[i-j] * alphal[i-1][]]
k{i] = R{i] - kI[i]
k[i] = k([i] / e[i-1]

alpha[i]l[i] = kI[i]

for (j=i-1; 3>0; j++)

alphalil[j] = alpha[i-1]1[j] - k[il*alpha[i-1][i-]]
e[i]l = (1 - k[i]l*k[i]) * e[i-1]

end

}

{Include constant definitions}
#include “lpc.h”

.entry levinson;

.external overflow;

.global e;

(listing continues on next page)
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.var/dm/ram i_1;

.var/dm/ram e[N+1];
.var/dm/ram a_new[N],a_old([N];
.var/dm/ram ap_new, ap_old;
.var/dm/ram p2_k_1i;

.var/dm p2_autocor_speech;

{determines the
.const

SBITS 3;

.const NSBITS = -SBITS;
levinson:
il = "~a_new; 11 = 0;
dm(ap_new) = 1il;

se

i2 = "a_old; 12 = 0;
dm(ap_old) = 1i2;

dm(p2_autocor_speech) = i4;
i5 = "e; 15 = 0;

m2 = -1;

m6 = -1;

= NSBITS;

{e[0] = R[O]}
ax0 = pm(i4,m5);
dm(i5,m5) = ax0;

{k[1] = R[1]1/el01]}

{ax0 = e[0] = divisor}
ayl = pm(id4,m4);

ay0 = 0000;

divide (ax0,ayl);

ar = -ay0;

dm(i0,ml) = ar;
dm(p2_k_1i) = i0;

{a_old[1l] = k[1]}

si = ay0;

sr = ashift si (hi);
dm(i2,m0) = srl;

{e[l] = (1 - k[11*k(1])*e[0]}
mx0 = ay0;

my0 = ayO0;

mr0 = Oxffff;

mrl = Ox7fff;

mr = mr - mxO*myO (ss);

176

{error values}

{pointers to a_*}
{pointer to kI[il}

format that a-values are stored in format:

{MSW of dividend}
{LSW of dividend}

(SBITS+1).(16-SBITS-1)}

{reverse sign of k before storing}

{store in

{ay0 = k[1]}

{mr = 1 in 1.31 format}

(SBITS+1).(16-SBITS-1)

format}



Linear Predictive Coding 3

{ax0 = e(0)}
my0 = ax0;
mr = mrl * myO (ss);
dm(i5,m4) = mrl;
{for(i = 2; 1 <= N; 1i++)}
cntr = N-1;
ax0 = 1;
dm(i_1) = ax0;
do pass_two until ce;

-~
[

{k[i] = 0}
mr = 0;
{for(j = 1; J <= 1i-1; J++)}
ay0 = dm(i_1);
cntr = ay0;
m3 = ay0; {i-1}
m7 = ay0; {i-1}

{prepare: k([i] = k[i] + R[i-jl*a_old[j]}
i2 = dm(ap_old);

12 0;
14 = dm(p2_autocor_speech) ;
14 = 0;
modify (i4,m7); {->R[1i-1]}
{loop}

do calc_ks until ce;
mx0 = pm(id,m6);
myOQ = dm(i2,ml);
calc_ks: mr = mr + mxO*myO (ss);
L

""" flow;

C
<
@
H
H

{k[i] = R[i] - k[i]}
i4 = dm(p2_autocor_speech); 14 = 0;
modify (i4d,m7) ;

modify (i4,m5) ; {->R[11]1}

si = pm(id,m4); {R[1]}

sr = ashift si (hi); {shift to (SBITS+1).(16-SBITS-1) format}
ayl = mrl; {k[i]}

ar = srl - ayl;
if av call overflow;

{k[i] k[il/e[i-11}
i5 = %e; 15 = 0;
modify (i5,m7) ;

ax0 = dm(i5,m5); {el[i-11}
ayl = ar; {MSW of k[i]}
ay0 = 0000; {LSW of kI[il}

(listing continues on next page)
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{overflow check}

si = ax0;

ar

sr = ashift si (hi);
= srl - ayl; {el[i-11 - kI[i]}

if ge jump e_ok;

{call overflow;}

sl
sr

{ayl = srl;}

Ox7fff;
ashift si (hi);

e_ok:

divide (ax0,ayl);

si = ay0;

sr = ashift si by SBITS(hi);
storing}

i0 = dm(p2_k_1i); 0 = 0;

ayl = srl;

ar = -ayl;
storing}

dm(iO,ml) = ar;

dm(p2_k_1i) = i0;
{a_new[i] = k[i]}

il = dm(ap_new); 11 = 0;
modify (il,m3);

dm(il,m2)

{for(j = i-1

’

ayo0;

j>0; j—-)}

cntr = dm(i_1);

{sat k[i]}

{shift to 1.15 format before

{reverse sign of k before

{k[i] store}

{->a_new[i]}

{prepare: a_new[j] = a_old[j] - k[i]*a_old[i-j]}
i2 = dm(ap_old);

12 = 0;

modify (i2,m3) ;
modify (i2,m2) ;
i0 = dm(ap_old) ;
10 = 0; mxO0

= srl;

do calc_as until ce;

{loop}
mr0 =
mrl =
myQ0 =
mr =

0;

dm(i2,m2);
dm(iO,ml) ;

mr - mx0*myO0 (ss);

if mv {sat mr} call overflow;

calc_as:
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dm(il,m2) = mrl;

{modify by j (= i-1)}
{-> a_old[j]}

{-> a_old[i-3F1}
{k[i]}

{a_old(j]}
{a_old[i-j]1}



Linear Predictive Coding 3

{eli] = (1 - k[il*k[i]) * e[i-11} {ay0 = k[i]}
mx0 = srl;
my0 = srl;
mr0 = Oxffff; {mr = 1 in 1.31 format}
mrl = OX7fff;

mr = mr - mxO0*myQ (ss);
if mv call overflow;

{ax0 = e(i-1)}

my0 = ax0;

mr = mrl * myO0 (ss);
dm(i5,m4) = mrl;

{switch the a pointers}
ax0 = dm(ap_old);
ay0 = dm(ap_new) ;
dm(ap_new) = ax0;
dm(ap_old) = ay0;

{i++ }
ay0 = dm(i_1);
ar = ay0 + 1;
pass_two: dm(i_1) = ar;
rts;
.endmod;

Listing 3.6 DURBIN.DSP Subroutine
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.module/boot=3/boot=4 durbin_double;
{ DURBIN2.DSP - single precision Levinso-Durbin routine
INPUT:

i4 -> buffer with autocorrelated speech (pm)
14 =0

i0 -> buffer for reflection coeffs

10 = 0

OUTPUT reflection coeffs calculated
mrl = Vp minimum total squared prediction error (normalized)
FUNCTIONS CALLED:
None
DESCRIPTON:
The routine implements Durbins recursion method of solving a set of linear
equations forming a Toeplitz matrix. The algorithm in C is as follows:

Where R[] is the autocorrelation, and k[] the reflection coeffs. e[] is the
total squared error, and a[][] i1s the predictor coeff matrix (Since only the
i‘th and the i+1’th column is used at any one time, the matrix is implemented
as two (a_old and a_new) columns swapping place after each iteration.

e[0] = R[O]

k[1] = R[1] / el0]
alpha[1][1] = k(1]

ell] = (1 - k[1]*k[1]) * e[O]

for (i=2; i<=N; i++)

begin

kii] = 0

for (j=1; Jj<=i-1; J++)

k[i] = k[i] + R[i-j] * alphal[i-1]1(j] k[i] = R[i] - kI[i]
k[i] = k[i] / eli-1]

alpha(i][i] = k[i]

for (j=i-1; 3>0; Jj++)

alphal[i]l [j] = alpha(i-1][3j] - k[il*alphali-1][i-3]

efi] = (1 - k[il*k[i]) * e[i-1]

end

In this version the alpha’s (a’s) are stored as 32 bit numbers.
}
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#include “lpc.h”

.entry levinson;
.external overflow;
.global e;

.var/dm/ram i_1;

.var/dm/ram e[N+1];

.var/dm/ram a_new[2*N],a_old[2*N];
.var/dm/ram ap_new,ap_old;
.var/dm/ram p2_k_i;

.var/dm p2_autocor_speech;

{determines the

.const SBITS = 4;
.const NSBITS = -SBITS;
levinson:
il = "a_new; 11 = 0;
dm(ap_new) = 11;
i2 = "a_old; 12 = 0;
dm(ap_old) = 12; dm(p2_autocor_speech) = i4;
i5 = %e; 15 = 0;
m2 = -1;
mé6 = -1;
se = NSBITS;
{e[0] = R[O] }
ax0 = pm(i4,m5);
dm(i5,m5) = axO0;
{k[1] = R[1]/e[0]}
{ax0 = e[0] = divisor}
ayl = pm(i4,m4); {MSW of dividend}
ay0 = 0000; {LSW of dividend}
divide(ax0,ayl) ;
ar = -ay0; {reverse sign of k before storing}
dm(i0,ml) = ar;
dm(p2_k_1i) = 1i0;
{a_old[1] = kI[1]}
si = ay0;
sr = ashift si (hi); {store in (SBITS+1l).(32-SBITS-1)
dm(i2,ml) = srl;
dm(i2,ml) = sr0;
{e[1] = (1 - k([1]*k[1])*e[0]}
{ay0 = k([1]}
mx0 = ay0;
myQ = ay0;
mr0 = Oxffff; {mr = 1 in 1.31 format}
mrl = Ox7fff;
mr = mr - mx0*my0O (ss);

format that a-values are stored in format:

{error values}

{mswO, 1lswO, mswl,
{pointers to a_*}
{pointer to k[i]}

lswl,

(listing continues on next page)

(SBITS+1).(32-SBITS-1)}
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{ax0 = e(0)}
my0 = ax0;
mr = mrl * my0O (ss);
dm(i5,m4) = mrl;

{for(i = 2; i <= N; i++)}
cntr = N-1;
ax0 = 1; {i-1}

dm(i_1) = axO0;
do pass_two until ce;

{k[i] = 0}
ay0 = 0; {LSW}
ayl = 0; {MSW}
{for(j = 1; j <= i-1; Jj++)}
ax0 = dm(i_1);
cntr = ax0;
m3 = ax0; {i-1}
m7 = ax0; {i-1}
{prepare: k[i] = k[i] + R[i-jl*a_old[j]}

i2 = dm(ap_old); 12 = 0;

i4 = dm(p2_autocor_speech); 14 = 0;

modify(id,m7) ; {->R[i-11}

{loop}

do calc_ks until ce;
myl = pm(i4,m6); {R[i-31}
mxl = dm(i2,ml); {msw of a_old[j]}
mx0 = dm(i2,ml); {lsw of a_old[j]}
mr = mx0 * myl {(us); {lsw * msw}
mr0 = mrl; {shift down 16 bits}
mrl = mr2;
mr = mr + mxl*myl (ss); {msw * msw}
if mv call overflow;
ar = mr0 + ay0; {acum. 1lsw’s}
ay0 = ar;
ar = mrl + ayl + c; {acum. msw’s}
if av call overflow;

calc_ks: ayl = ar;

{k[i] = R[i] - k[i]}

i4 = dm(p2_autocor_speech); 14 = 0;

modify(i4,m7);

modify (i4,m5) ; {->R[i]}

si = pm(i4,m4); {R[1]}

sr = ashift si (hi); {shift to (SBITS+1l).(32-SBITS-1) format}

{ay0 = LSW of k[i]}
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ar
si

sr0 - ayO;
ar; {store for double precision upshift}
{ayl = MSW of k[i]}

ar = srl - ayl + ¢ - 1;
if av call overflow;

{ sr = lshift si by SBITS (lo):;
si = ar;
se = exp si (hi);
ayl = se;
se = NSBITS;
axl = SBITS;
ar = axl + ayl;

if gt call overflow;
sr = sr or ashift si by SBITS (hi);
}

{k[i] = k[i]/el[i-1]}
i5 = %e; 15 = 0;

modify (i5,m7) ; {->e[i-1]}
ax0 = dm(i5,m5); {e[i-1]}

ayl = ar {srl}; {MSW of k[il]}
{overflow check}

ar = abs ax0;

ay0 = ar;

ar = pass ayl;

ar = abs ar;

ar = ar - ay0; {abs (k[i]) - abs(el[i-11)}
if gt call overflow;

ay0 = si {sr0}; {LSW of k[il}

divide(ax0,ayl);

si = ay0;

sr = ashift si by SBITS (hi);

ay0 = sril;

i0 = dm(p2_k_i); 10 = 0;

ayl = srl;

ar = -ayl; {reverse sign of k before storing}
dm(i0,ml) = ar; {k[i] store}

dm(p2_k_i) = i0;

(listing continues on next page)
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{a_new[i] = k[i]}
si = ay0;
sr = ashift si (hi); {store in (SBITS+1l).(32-SBITS-1) format}
il = dm(ap_new); 11 = 0;

modify (il,m3);

modify (il,m3); {->a_new[i] .msw}
modify (il,ml); {->a_new[i].lsw}
dm(il,m2) = sr0; {store lsw}
dm(il,m2) = sril; {store msw}

{for(j = i-1; 3>0; j—)}
cntr = dm(i_1);

{prepare: a_new[j] = a_old[j] - k[i]l*a_old[i-3j]}
i2 = dm(ap_old); 12 = 0;
modify (i2,m3) ;

modify (i2,m3) ; {-> a_o0ld[j+1] .msw}
modify (i2,m2) ; {-> a_old[j].1lsw}
i0 = dm(ap_o014d); {-> a_old[i-j] .msw}
10 = 0; myl = ay0; {k[il}
{loop}
do calc_as until ce;
ay0 = dm(i2,m2); {a_old[j].1lsw}
ayl = dm(i2,m2); {a_old[j] .msw}
mxl = dm(i0,ml); {a_old[i-3j] .msw}
mx0 = dm(iO,ml); {a_old[i-j].1lsw}
mr = mxO0*myl (us) {lsw * msw}
mr0 = mrl; {shift down by 16 bits}
mrl = mr2;
mr = mr + mxl*myl (ss); {msw * msw}
if mv call overflow;
ar = ay0 - mrO; {acum. lsw’s}
dm(il,m2) = ar;
ar = ayl - mrl + ¢ - 1; {acum. msw’s}
if av call overflow;
calc_as: dm(il,m2) = ar;
{e[i] = (1 - k[il1*k[i]) * e[i-1]} {myl = k[i]}
mx0 = myl;
mr0 = Oxffff; {mr = 1 in 1.31 format}
mrl = Ox7fff;

mr = mr - mxO*myl (ss);
if mv call overflow;

{ax0 = e(i-1)}

my0 = ax0;
mr = mrl * myO (ss);
dm(i5,m4) = mrl;
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{switch the a pointers}
ax0 = dm(ap_old);
ay0 = dm(ap_new) ;

dm(ap_new) = ax0;
dm(ap_old) = ay0;
{i++}
ay0 = dm(i_1);
ar = ay0 + 1;
pass_two: dm(i_1) = ar;
rts;
.endmod;

Listing 3.7 DURBIN2.DSP Subroutine
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.module/boot=4 encode_parameters;
{ ENCODE.DSP - truncates/compresses the lpc parameters.

INPUT:
il -> k (reflection coeffs) 11 = 0
ar = pitch
si = gain

OUTPUT: k'’s encoded inplace
ar pitch
si gain

In

The parameters are truncated into the required nr of bits, either by linearly (gain)
or logarithmic (k’s) quantization.

Logarithmic: g[i] = loglO((1l+k[i])/(1-k[i]))/4
}

#include “lpc.h”
.const LOG_ORDER = 8;

.var/pm log_coeffs[2*LOG_ORDER]; {Ci 1sb, Ci msb, Ci-1 1lsb ..... }
.init log_coeffs: <log.cff>; {scaled down by 512 = 279}
.const LAR_ORDER = 16;
.var/pm lar_coeffs[2*LAR_ORDER]; {Ci 1lsb, Ci msb, Ci-1 1sb ..... }
.init lar_coeffs: <enc.cff>; {scaled down by 512 = 279}
.var/pm round[WORDS_PR_LPCFRAME] ;
.init round:

0x000900, {pitch, 7 bit, (9=16-7) shifting NOT rounding}

0x000600, {gain, 6 bit}

0x000600, {k1,
0x000600, {k2,

0x000500, ({k3, bit}

0x000500, {k4, bit}

6 bit}
6
5
5
0x000400, {k5, 4 bit}
4
3
3
3

bit}

e+

0x000400, {k6, bit}
0x000300, {k7, bit}

0x000300, {k8, bit}
0x000300, {k9, bit}
0x000200; {k10, 2 bit}

{ —_—
54 bit/frame}
.var/dm temp_pitch;
.var/dm temp_gain;
.entry encode;
.external poly_approx;
encode:
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{encode parameters}

{ar

i4

se
ST

pitch}
pm (i
1shi

dm (temp_pitch)

{si
sr0

~round;

14

0;

4,m5) ;
ft ar (lo);

sr0;

gain}
si;
pass sr0;

jump zero_gain;
0x0000;

si;

LOG_ORDER - 1;
~log_coeffs; 16
call poly_approx;

si mx0;

sr

sr
si srl;
se pm(id,m5);
call do_round;
zero_gain:

1lshift si by 9

0;

(lo);

sr or ashift ar by 9

{nr of bits to shift}

{gain 1lsb}
{gain msb}
{logl0 function}
{scale up by 512,
{the coeff’s}
(hi);

{nr of bits to round to}

comes with}

comes with}

dm(temp_gain) = sr0;
cntr = 2 {N};
do enc2_k until ce;
myO = 0x0000; {k 1lsb}
myl = dm(il,m0); {k msb}
ax0 = LAR_ORDER - 1;
i6 = "~lar_coeffs; 16 = 0;
call poly_approx; {log area ratio function}
si = mx0;
sr = 1lshift si by 9 (lo); {scale up by 512,
{the coeff’s}
sr = sr or ashift ar by 9 (hi);
si = sril;
se = pm(i4,m5);
call do_round;
enc2_k: dm(il,ml) = sr0;
cntr = N-2;
do enc_k until ce;
si = dm(il, mO0);
se = pm(id,m5) ;
call do_round;
enc_k: dm(il,ml) = sr0;

(listing continues on next page)
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{setup return parameters}
ar = dm(temp_pitch);
si = dm(temp_gain) ;

rts;

{ ROUNDING routine
Input si = value to be rounded
se = nr of bits to round to
Output sr0 = rounded value}

do_round:
sr = ashift si (lo);

mr0 = sx0;

mrl = srl;

mr = mr (rnd), ay0 = se;

ar = -ayO0;

se = ar;

sr = ashift mrl (hi);
rts;
.endmod;

Listing 3.8 ENCODE.DSP Subroutine
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.module/boot=3/boot=4 gain_calculation;
{ GAIN.DSP - Calculates the gain factor for a speech frame.

INPUT:
i0 -> speech frame
10 =0

OUTPUT:
srl = gain

FUNCTIONS CALLED:

poly_approx - used to aproximate sqgrt function
DESCRIPTION:

The gain of a frame is calculated as:

gain = sqrt (sum_over_frame(x(n)~"2))

A simple no-speech detection is implemented, if the gain is lower than

NOISE_FLOOR the gain is set to zero. The result is scaled appropriately by

GAIN_SCALE.
}

{Include constant definitions}
#include “lpc.h”

.const NOISE_FLOOR = 0x0000; {found as gain when no input is present}
.const GAIN_SCALE = 0; {appropriate scale value}

.entry calc_gain;

.external sqrt;

calc_gain:
{calulate energy of frame, R(0), as sum of input squared}
mr=0;
cntr = FRAME_LENGTH;
do cor_data_loop until ce;
si = dm(i0O,ml);
sr = ashift si by G_INP_SHIFT (hi); {scale to avoid overflow}
myO = srl;
cor_data_loop: mr=mr+srl*my0(ss);

{set gain = 0 if energy is under noise level}
ay0 = NOISE_FLOOR;
ar = mrl - ayO0;
if gt jump speech;
srl = 0;
jump from_noise;
speech:

(listing continues on next page)
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{calc the gain as the squareroot of R(0)}

sr = lshift mr0 by -12 (lo); {shift to 16.16 format}
sr = sr or ashift mrl by -12 (hi);
mrl = srl; {msw of gain”2}
mr0 = sx0; {lsw of gain~”2}
call sqrt; {result is in unsigned 8.8 format}
sr = 1lshift srl by 7 (hi); {shift back to 1.15 format}
sr = lshift srl by GAIN_SCALE (hi);
from_noise:
rts;
.endmod;

Listing 3.9 GAIN.DSP Subroutine

.module/boot=3/boot=4 ovfl;
.entry overflow;

{used to break on overflows during debug}
overflow:
rts;

.endmod;

Listing 3.10 OVERFLOW.DSP Subroutine
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.module/boot=3/boot=4 pitch_detection;
{ PITCH.DSP - extracts the pitch period, and makes a voiced/unvoiced decision.

INPUT:
i0 -> k[N]
10 = 0
i6 -> autocor_speech[FRAME_LENGTH]
16 = 0
OUTPUT:
si = pitch (= 0 if unvoiced)
CONST:

PITCH_DETECT_LENGTH = part of frame used for pitch detection starting at 3 msec.
mSEC_3 = sample to start pitch detection at
FUNCIOTNS CALLED:
None
DESCRIPTION:
The k’s are autoscaled, and then autocorrelated. The new values are correlated
with the autocorrelated speech R[]. The resulting sequence is searched for the
largest peak in the interval mSEC_3 .....
mSEC_3+PITCH_DETECT_LENGTH Depending on the relative size of the peak (to
re[0]), a decision of voiced/unvoiced is made. In case of voiced the location
is equal to the pitch period.
}

{Include constant definition}
#include “lpc.h”

.entry detect_pitch;
.external overflow;

.var/dm rk([N]; {autocorrelation of k([]}
{.var/pm re[FRAME_LENGTH];} {cross correlation of R[] and rk[]}
.var/dm k_dm[N]; {scratch copy’s of k}

.var/dm p2_k;
.var/dm p2_autocor_speech;
.var/dm zero_crossings; {in re(]}

detect_pitch:

{store pointers for later use}
dm(p2_k) = 10;
dm (p2_autocor_speech) = i6;

{autoscale before autocorrelation}
{detect largest value in k’s}
{i0 = ~k; 10 = 0;}

cntr = N;

sb = -16;

do max_k until ce;

si = dm(iO,ml);
max_k: sb = expadj si;

(listing continues on next page)
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{adjust k input: normalize to largest and then right shift to |P_K_SHIFT]|.
(16-|P_K_SHIFT|) format (done in one shift). At the same time copy to
pm for correlation}

10 = dm(p2_k); 10 = 0;

il = ~k_dm; 11 = 0;

cntr = N;

ax0 = sb;

ay0 = P_K_SHIFT; {scale down to avoid overflow (worst case)}
ar = ay0 - ax0;

se = arj;

do adj_k until ce;

si = dm(i0,ml) ;
sr = ashift si (hi);

adj_k: dm(il,ml) = sril;
{calculate autocorrelation of k[], rk[i] = sum_of k[jl*k[i+3]}
i5 = *k_dm; 15 = 0; {k[i+3]1}
i2 = N; 12 = 0; {innerloop counter ‘refill’}
il = "“rk; 11 = 0;
m2 = -1;
cntr = N;
do corr_loop until ce;
i0 = ~k_dm; 10 = 0; {k[31}
i4 = i5; 14 = 0;

do cor

corr_1

{shift do
cntr =

{i6 = ~au
do shf

shft_a

cntr = i2;

mr=0, myO = dm(i4,;m5);

mx0=dm(i0,ml) ;

_data_loop until ce; mr=mr+mx0*my0 (ss),myO=dm(i4,m5);
cor_data_loop: mx0=dm(i0,ml) ;

if mv call overflow;

mx0 = dm(i2,m2);

my0 = dm(i5,m5); {(innerloop cnt’er)—, i++}
oop: dm(il,ml) = mrl;
wn R[] (autocor_speech) to |P_R_SHIFT|.(16-|P_R_SHIFT|) format}

FRAME_LENGTH;

tocor_speech; 16 = 0;}

t_ac until ce;

si = pm(i6,m4) ;

sr = ashift si by P_R_SHIFT (hi);
c: pm(i6,m5) = srl;

{Setup rk[] and R[] (autocor_speech) for correlation. Only calculate the necessary

correl
(sampl
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{ reli] = sum_of(rk[j]I*R[i+j]) }
i5 = dm(p2_autocor_speech) ; 15 = 0; {R[i+71}
i2 = N; 12 = 0;
i6 = dm(p2_autocor_speech) ; 16 = 0;
ay0 = 0; {last ’‘sign’ for zerocrossing count}
af = pass ay0; {zerocrossing counter}
cntr = PITCH_DETECT_LENGTH + mSEC_3; {0-15 msec} {correlate rk’s and R’s}
do cor_loop until ce;
i0 = “rk; 10 = 0; {rk(jl}
i4 = i5; 14 = 0;
cntr=i2;

mr=0, myO=pm(i4,m5), mx0=dm(i0,ml);
do cor_inner_loop until ce;
cor_inner_loop: mr=mr+mx0*my0 (ss),myO=pm(i4,m5),mx0=dm(1i0,ml);

ar = mrl xor ay0; {test for sign switch = zerocrossing}
if ge jump no_crossing;

af = af + 1; {inc zerocrossing counter}

ay0 = mrl; {store new sign}

no_crossing:

modify (i5,m5) ; {i++}

cor_loop: pm(i6,m5) = mrl;
ar = pass af;
i5 = ar; {zerocrossing count}

{find the largest peak in range 3-15 msec. The index of the largest peak is
equal to the pitch period. At the same time count the nr of zerocrossings in
rel]}

si = 0; {store for pitch of max peak}

ayl = 0; {store for value of max peak}

i6 = dm(p2_autocor_speech); 16 = 0;

ax0 = pm(i6,m4); {save re(0) for voiced/unvoiced check}
m7 = mSEC_3;

modify (i6,m7) ; {-> re(mSEC_3)}

i2 = mSEC_3; 12 = 0; {pitch counter}

cntr = PITCH_DETECT_LENGTH;
do find_max_peak until ce;

axl = pm(i6,m5); {rel[j]}

ar = axl - ayl; {re[j] > max?}

if le jump not_bigger;
ayl = axl; {new max value}
si = 12; {corresponding pitch value}
not_bigger:
nop;

find_max_peak: modify (i2,ml); {(pitch period cnt’er) ++}

(listing continues on next page)

193



3 Linear Predictive Coding

{Check for voiced/unvoiced excitation. If unvoiced set pitch = 0}

ay0 = 0000;
divide(ax0,ayl);
ax0 = i5;
ayl = 70;

ar = ax0 - ayl;

if ge jump not_voiced;
axl = 0x1999;

ar = ay0 - axl;

if 1t jump not_voiced;
axl = 0x2666;

ar = ay0 - axl;
if gt jump frame_voiced;
ayl = 60;

ar = ax0 - ayl;
if 1t jump frame_voiced;
not_voiced:
si 0;
io0 dm(p2_k); 10 = 0;
m3 = 4;
modify (i0,m3);
ax0 = 0;
cntr = 6;
do zero_ks until ce;
zero_ks: dm(iO,ml) =
frame_voiced:
rts;

non

.endmod;

Listing 3.11 PITCH.DSP Subroutine
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.module/boot=3/boot=4 approximate_func;
{ POLY.DSP - Calculates the polynomial approximation to a function given by the
coefficients. Uses 32 bit; vy = f(x);

INPUT:
my0 = x 1lsb
myl = x msb
ax0 = POLY_ORDER - 1
i6 = -> coeffs (in pm) (Ci 1sb, Ci msb, Ci-1 1lsb ..... )
OUTPUT:
mx0 = y msb
ar =y 1lsb
f(x) is approximated by a polynomial:
f(x) = C[0] + C[1]*X"1 .... + C[(POLY_ORDER-1)]*X" (POLY_ORDER-1)
}

#include “lpc.h”
.entry poly_approx;

poly_approx:
mx0 = pm(ié,m5); {c 1lsb}
ar = pm(ié,m5); {c msb}
cntr = ax0;
do approx_loop until ce;

mr = mx0 * myl (us), ay0 = pm(i6,m5); {c[i]llsb*xmsb, c[i-1] 1lsb}
mr = mr + ar * my0 (su), ayl = pm(i6,m5); {c[ilmsb*x1lsb, c[i-1] msb}
mr0 = mrl;
mrl = mr2; {shift down by 16 bits}
mr = mr + ar * myl (ss); {c[ilmsb*xmsb}
ar = mr0 + ay0; {c[il*x 1lsb + c[i-1] 1lsb}
mx0 = ar;
approx_loop: ar = mrl + ayl + c; {c[il*x msb + c[i-1] msb}
rts;
.endmod;

Listing 3.12 POLY.DSP Subroutine
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.module/boot=3/boot=4 pre_emphasize_speech;
{ PREEMP.DSP - pre-emphasizes a frame of speech. (filters it)

INPUT:
i0 -> speech frame to be filtered
10 = 0

Frame is altered!!

OUTPUT:
frame of speech is emphasized
FUNCTIONS CALLED:
None
DESCRIPTION:
Filters the speech using H(z) =1 - 0.9375*z-1
}

{Include constant definitions}
#include “lpc.h”

.entry pre_emph;

.external overflow;
.var/dm/ram delay;

pre_emph:

{preemphasize}

mx0 = 0x8801; {u = -0.9375}
cntr = FRAME_LENGTH;

do filt_speech until ce;

mr = 0;

my0 = dm(delay); {x(n-1)}

mrl = dm(i0,m0) ; {x(n)}

dm(delay) = mrl; {update delay with x(n)}

mr = mr + mx0*myO (ss); {x(n) + u*x(n-1)1}

if mv call overflow;

filt_speech: dm(i0,ml) = mrl; {store filtered sample}
rts;
.endmod;

Listing 3.13 PREEMP.DSP Subroutine
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.module/boot=3/boot=4 random;
{ RANDOM.DSP - Random number function.

INPUT
srl = msw of seed
sr0 = lsw of seed

OUTPUT:
for best result use ONLY srl as random number
srl = msw of new seed between 0 and 2732

sr0 = lsw of new seed
FUNCTIONS CALLED:
None
DESCRIPTION:
The function (taken from the APPS handbook) implements
x(n+l) = (a*x(n) + c¢) mod m

m = 2732 a = 1,664,525 ¢ = 32767
}

.entry noise_rand;
noise_rand:

myl = 25; {upper half of a}
myO = 26125; {lower half of a}
mr = srO0*myl (uu);
mr = mr + srl*myO (uu); {a(hi)*x(1lo)}
si = mrl; {a(hi)*x(lo) + a(lo)*x(hi)}
mrl = mro0;
mr2 = si;
mr0 = Oxfffe; {c = 32767, leftshifted by 1}
mr = mr + srO*my0O (uu); {(above) + a(lo)*x(lo) + c}
sr = ashift mr2 by 15 (hi);
Sr = sr or lshift mrl by -1 (hi); {right shift by 1}
sr = sr or lshift mr0 by -1 (lo);
rts;
.endmod;

Listing 3.14 RANDOM.DSP Subroutine
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.module/boot=3/boot=4 square_root;
{ SORT.DSP - Calculate the squareroot

INPUT:
mrl = msw of x in 16.16 format
mr0 = 1lsw of x
ml =5

OUTPUT:

srl = y in 8.8 unsigned format
CALLED FUNCTIONS:
None
DESCRIPTION:
Approximates the squareroot of x by a Taylor series y = sqrt(x)
COMPUTATION TIME:
75 cycles (maximum)
}

.const BASE=h#0d449, SQRT2=h#5a82;
.var/pm sqrt_coeff[5];
.init sqrt_coeff: h#5d1d00, h#a9ed00, h#46d600, h#ddaa00, h#072d00;

.entry sqrt;

sqgrt:
i6="sqrt_coeff; 16 = 0; {pointer to coeff. buffer}
se=exp mrl (hi); {check for redundant bits}
se=exp mr0 (lo);
ax0=se, sr=norm mrl (hi); {remove redundant bits}

sr=sr or norm mr0 (lo);
myO=srl, ar=pass srl;

if ea rts
1f eqg

res?

mr=0;

mrl1=BASE; {load constant value}
mf=ar*my0 (rnd), mxO=pm(i6,m5); {mf = x**2}
mr=mr+mx0*my0 (ss), mxO=pm(i6,m5); {mr = BASE + cl*x}
cntr=4;

do approx until ce;
mr=mr+mx0*mf (ss), mx0=pm(i6,m5) ;
approx: mf=ar*mf (rnd);

ay0=15;

myO=mrl, ar=axO+ay0; {se + 15 = 07}

if ne jump scale; {no, compute sqrt(s)}
sr=ashift mrl by -6 (hi);

rts;
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scale: mr=0;
mrl=SQRT2; {load 1/sqrt(2)}
myl=mrl, ar=abs ar;
ayO=ar;
ar=ay0-1;
if eq jump pwr_ok;
cntr=ar; {compute (1/sqrt(2))"(se+15)}
do compute until ce;
compute: mr=mrl*myl (rnd);
pwr_ok: if neg jump frac;
ayl=h#0080; {load a 1 in 9.23 format}
ay0=0; {compute reciprocal of mr}
divs ayl, mrl;
divg mrl; divg mrl; divg mrl;
divg mrl; divqg mrl; divqg mrl;
divqg mrl; divqg mrl; divqg mrl;
divg mrl; divqg mrl; divg mrl;
divqg mrl; divqg mrl; divqg mrl;
mx0=ay0;
mr=0;
mr0=h#2000;
mr=mr+mx0*my0 (us);
sr=ashift mrl by 2 (hi);
sr=sr or lshift mr0 by 2 (lo);

rts;
frac: mr=mrl*my0O (rnd);
sr=ashift mrl by -6 (hi);
rts;
.endmod;

Listing 3.15 SQRT.DSP Subroutine
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.module/boot=3/boot=4 lpc_sync_synth;
{ SSYNTH.DSP - synthesizes lpc speech on a pitch syncronious boundry.

INPUT:
il -> (negative) reflection coefficient (k([]’s)
11 = 0
i2 -> output (speech) buffer
12 = 0
axl = pitch period
mxl = gain
OUTPUT:

Ouput buffer filled
FUNCTIONS CALLED:
noise_rand (random number generator)
DESCRIPTION:
clear_filter: clears delay line, initializes variables (no arguments required)

synthesis: updates the frame delay line -> new -> old -> then synthesises
a frame of speech, based on interpolated parameters (cur_) from
the last frame (old_) and the latest (new_). When a frame is
considered voiced the filter is excited with an impuls on a
pitchsyncronous boundry. When a frame is unvoiced, the filter is
excited whith random noise. Before input to the filter the
excitation is scaled to an appropriate value depending on
voiced/unvoiced status and the gain. The lattice filter is
taken from the apps handbook.

In order to interpolate the parameter a DELAY OF ONE FRAME is introduced!
}

{include constant definitions}

#include “lpc.h”;

.entry synthesis, clear_filter;

.external noise_rand;

.var/pm/ram/circ e_back[N]; {delay line}
.var/dm/ram lo_noise_seed,hi_noise_seed;
.var/pm/ram new_k[N];

.var/dm/ram new_gain;

.var/dm/ram new_pitch;

.var/pm/ram 0ld_XkI[N];

.var/dm/ram old_gain;

.var/dm/ram old_pitch;

.var/dm/ram/circ cur_kI[N];
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.var/dm/ram cur_gain;

.var/dm/ram cur_pitch;

.var/dm/ram pif_cnt; {Place In Frame - cntr}
.var/dm/ram pp_cnt; {pitch period - cntr}

.var/dm/ram first_time;

{clear filter and return}
clear_filter:

{clear the filter}

i4 = ~e_back; 14 = 0;

ar = 0;

cntr = N;

do clear_loop until ce;
clear_loop: pm(i4,m5) = ar;

{initialize seed value for random nr generation}
ax0 = 0;

dm(lo_noise_seed) = ax0;

dm(hi_noise_seed) = ax0;

ax0 = 1;

dm(first_time) = ax0; {first_time = TRUE}
rts;

{generate one frame of data and output to speech buffer}
synthesis:

ax0 = dm(first_time);

ar = pass ax0;

if eq jump not_first;

{copy parm’s to new} {first_time = TRUE}
dm(new_pitch) = axl;
dm{new_gain) = <1;
i6 = “new_k; 16
cntr = N;
do move_to_new until ce;

ax0 = dm(il,ml);

move_to_new: pm(i6,m5) = ax0;

{start of by interpolating}
ax0 = 1;
dm(pp_cnt) = ax0;

{don’t do this anymore}
ax0 = 0;

dm(first_time) = ax0;
jump done;

(listing continues on next page)
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not_first: {first_time = FALSE}
{move parm’s from old to new and update new}
ax0 = dm(new_pitch);
mx0 = dm(new_gain);
dm(new_pitch) = axl;

dm (new_gain) = mx1;
dm(old_pitch) = ax0;
dm(old_gain) = mx0;

i6 = “new_k; 16 = 0;

i5 = ~old_k; 15 = 0;

cntr = N;

do move_to_old until ce;
ay0 = pm(i6,m4), ax0 = dm(il,ml);
pm(i5,m5) = ay0;
move_to_old: pm(i6,m5) = ax0;
{setup for lattice filter}
i0 = “~cur_k; 10 = N;

i4 = "~e_back; 14 = N;
m2 = -1;

mée = 3;

m7 = -2;

{setup pitch_period cntr, in temp var (=af)}
ax0 = dm(pp_cnt);
af = pass ax0;

{synthesize a whole frame}

cntr = FRAME_LENGTH;

ax0 = 0;

dm(pif_cnt) = ax0;

do frame_loop until ce;
myO0 = 0; {excitation default to 0}
af = af - 1;
if gt jump not_pitch_time;

{time to interpolate}

{calculate interpolation factor = pif_cnt/(FRAME_LENGTH - 1)}
mx0 = dm(pif_cnt);

myO = INTERP_FACTOR; {= 1/ (FRAME_LENGHT - 1) shift -1}
mr = mx0 * myO (ss); {product is in 17.15 format}
myl = mr0; {get 1.15 format}

{calc interpolated gain}
ax0 = dm(new_gain) ;
ay0 = dm(old_gain);

ar = ax0 - ayO0; {new - old}

mr = ar * myl (ss); { (new-01d) *int_factor}
ar = mrl + ayO; { + old}

dm(cur_gain) = ar;
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{test for transition between voiced/unvoiced and unvoiced/voiced}

{set myO0

ay0 = dm(old_pitch);
ar = pass ay0;
if eq jump old_unv;
ax0 = dm(new_pitch);
ar = pass ax0;
if eq jump new_unv;
{voiced - voiced}
{calc interpolated pitch}
ar = ax0 - ay0; {new - o0ld}
mr = ar * myl (ss); { (new-o0ld) *int_factor}
ar = mrl + ay0; { + old}
dm(cur_pitch) = ar;
{”interpolate” k’s}
il = “cur_k; 11 = 0;
i5 = ~old_k; 15 = 0;
cntr = N;
do interpolate_k until ce; ay0 = pm(i5,m5);
interpolate_k: dm(il,ml) = ay0; new_unv:

{reinitialize pitch cntr}
ar = dm(cur_pitch);
af = pass ar;

= excitation impuls, in case of voiced frame}

{multiply excitation by gain* (pitch/FRAME_LENGTH) }

mx1

my1l

mr
myl

my 1

my 0

= ONE_OVER_FRAMEL;

{ = 1/FRAME_LENGTH}

dm(cur_pitch) ;

mxl * myl (ss); {pitch/FRAME_LENGTH, result in 16.16 format}
(cur_gain) ;

= mrl * myl (ss); {gain*pitch/FRAME_LENGTH}
Ox7fff; {impuls}
mrl * myl (ss);

= mrl;

jump not_pitch_time;

old_unv: {unvoiced - *}
ax0 = 1; {set the pitch_period cntr to a apropriate spacing}
af = pass ax0;
ax0 = 0;

dm(cur_pitch) = ax0; {set voiced state to unvoiced}

{copy old_k to cur_k}

il = “cur_k; 11 = 0;

i5 = "~old_k; 15 = 0;
cntr = N;

do move_to_cur until ce;
ay0 = pm(i5,m5) ;

move_to_cur:dm(il,ml) = ayO0;

not_pitch_time:
(listing continues on next page)
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{calculate driving sample if noised}
ax0 = dm(cur_pitch);

ar = pass ax0; {check for voiced/unvoiced}

if ne jump voiced;

srl = dm(hi_noise_seed) ; {noised, old_pitch = 0}

sr0 = dm(lo_noise_seed) ;
call noise_rand; {random: 16 bit nr}
dm(hi_noise_seed) = srl;

dm(lo_noise_seed) = sr0;

ar = abs srl;

sr = ashift ar by -3 (hi);

myl = dm(cur_gain) ; {multiply by gain}

mr = srl * myl (ss);

myOQ = mrl; {my0 = excitation}

jump do_filter;

voiced:

do_filter:

{do allpole lattice filter (from apps book)}
cntr = N - 1;
mr = 0;
mrl = myO;
mx0 = dm(i0,ml), my0 = pm(i4,m5);
mr = mr - mx0*my0 (ss), mxO0 = dm(i0,ml), myO = pm(i4,m5);
do dataloop until ce;
mr = mr - mx0*myO (ss);
myl = mrl, mr = 0;

mrl = myO;
mr = mr + mxO0*myl (ss), mx0 = dm(i0,ml), myO = pm(i4,m7);
pm(i4, m6) = mrl, mr = 0;

dataloop: mrl = myl;

my0 = pm(i4,m7), mx0 = dm(i0,m2);

dm(i2,ml) = myl; {store synthesized sample}
pm(id,m5) = mrl; {store newest value in delay line

{increment place_in_frame cntr}
ay0 = dm(pif_cnt);
ar = ay0 + 1;
frame_loop: dm(pif_cnt) = ar;
{store pitch_period cntr for next iteration}
ar = pass af;
dm(pp_cnt) = ar;
done:
14 = 0;
rts;

.endmod;

Listing 3.16 SSYNTH.DSP Subroutine
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4.1 OVERVIEW

This chapter describes the implementation of the Pan-European Digital
Mobile Radio (DMR) Speech Codec Specification 06.10. This code was
developed in accordance with the recommendation of the Conference of
European Post and Telecommunications’ (CEPT) Group Special Mobile
(GSM). A copy of the recommendation can be obtained directly from this
organization.

The recommendation describes how the software must perform, and
provides a brief tutorial on the algorithm’s operation. This chapter and the
accompanying code were written to follow the structure of the
recommendation.

For your reference, this chapter also includes subroutines for Voice
Activity Detection (VAD, Specification 06.32) and Comfort Noise Insertion
(CNI, Specification 06.12) . Together, these subroutines provide a more
complete solution for GSM applications. For more information about these
particular subjects, refer to the corresponding specifications.

411  Speech Codec

The speech codec for pan-European digital mobile radio is a modified
version of a Linear Predictive Coder (LPC). The LPC algorithm uses a
simplified model of the human vocal tract, which consists of a series of
cylinders that vary in diameter. To produce voiced speech, you force air
through these cylinders. You can represent this structure mathematically
by a series of simultaneous equations that describe the cylinders.

Early LPC systems worked well enough for users to understand the coded
speech, but often, not well enough to identify the speaker. The LPC
system described in this chapter uses two techniques, Regular Pulse
Excitation (RPE) and Long Term Prediction (LTP), to improve the quality
of the coded speech. The improved speech quality is almost comparable to
the speech quality produced by logarithmic Pulse Code Modulation
(PCM).
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The input to the speech codec is a series of 13-bit speech data samples
sampled at 8 kSa/s. The codec operates on a 20 ms window (160 samples)
and reduces it to 76 coefficients (260 bits) that result in a coded data rate of
13 kbits/s.

41.2  Software Comments
This section includes several comments that apply to the program
examples in this chapter.

4.1.2.1 Multiply With Rounding

The GSM recommendation requires a multiply with rounding operation that
provides biased rounding. Although the ADSP-21xx family does have a
multiply with rounding instruction, this implementation does not use it
because the instruction performs unbiased rounding (see the ADSP-2100
Family User’s Manual), and the RND mode of the multiplier introduced bit-
errors during the codec testing.

To eliminate this problem, the code uses a pre-multiply that stores the
value H#8000 in the MR register. Unbiased rounding is then completed by
a multiply /accumulate that produces the desired result. The MF register is
loaded with H#80, and, at various points, an X-register is also loaded with
H#80. Multiplying these two registers places the H#0000008000 in MR.

4.1.2.2 Arithmetic Saturation Results

The GSM recommendation also requires that arithmetic results be
saturated. The ALU’s AR_SAT mode easily accomplishes this task.
Whenever an ALU operation produces an overflow, the output is
automatically saturated at the appropriate value.

An arithmetic overflow occurs when the arithmetic operation produces an
output that does not fit completely in the proper word size. In other
words, the MSB of the word is not the sign bit. Since only the Most
Significant Word (MSW) of a multiprecision value contains a sign bit, it is
appropriate to check for overflow only in the MSW. When an LSW result
does not fit in the output word size, it produces a carry into the next word,
not an overflow.

When the LSW of a double precision result is produced, the saturation
mode must be disabled. When the MSW is produced, the entire word can
be checked for overflow, and saturated as necessary. Throughout the code,
the ALU saturation mode is turned on when producing MSWs, or single
precision values, and turned off for LSWs.
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4.1.2.3 Temporary Arrays

The GSM recommendation specifies the creation of temporary arrays
during codec execution. You do not need to save the value of these arrays,
and whenever possible, they are eliminated in this implementation to save
memory space. For example, the code overwrites the input speech
window array with the output of the short term filter (difference signal d()
array) instead of creating a new array.

In many cases, the code uses a single array for several purposes. The
code’s in-line comments indicate what information is stored by a
particular section of code.

4.1.2.4 Shared Subroutines

The encoder is designed to produce an estimated signal based on the same
information that is available at the decoder. This structure allows both
systems to operate in synchronization. The encoder uses only the decoded
values of transmitted parameters, insuring that it acts on the same
information available to the decoder.

This requires that the encoder uses many of the same subroutines used by
the decoder. Routines that are used by both systems are placed at the end
of the listing, and are described only in the encoder section of this chapter.

4.2 ENCODER

Listing 4.1, GSM0610.DSP, is a full-duplex codec program example that
contains the encoder and decoder subroutines. The encoder has three
main sections:

¢ The linear prediction coder (LPC)-The LPC computes a set of eight
reflection coefficients that describe the entire window of data.

* The regular pulse excitation (RPE) grid selector-The RPE grid selector
breaks the input window into 4 sub-windows and computes a different
excitation signal for each. By using 4 separate excitation signals, the
codec can process speech signals that may change within a given
window.

* The long term prediction (LTP) system-The LTP system reduces the
error of the signal over the entire window.
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421  Down Scaling & Offset Compensation Of The Input

The LPC encoder requires 160 samples of left-justified linear data as input.
This window of data must be downshifted three bits, then upshifted two
bits. The final result of this is to divide each value in half and set its two
LSBs to zero. The first two instructions of the offset_comp loop perform this
operation.

A double-precision high-pass filter is applied to the downshifted input to
produce an offset-free signal. The code must execute a double-precision
multiplication to maintain the necessary accuracy.

The rest of the offset_comp loop implements this filter. The shift instruction
isolates the MSW of L_z2, which is held in the MR register. The AR
register holds the LSW of L_z2. The LSW is multiplied by alpha (MY0) to
produce the result temp. The new value of L_s2 is generated, shifted into
position and added to temp. After the addition of these two values, the
MSW is multiplied by alpha and added to L_s2 to produce L_z2.

The last steps of the loop compute the rounded value that is stored as

output, and loads several registers for the next iteration. As in most of
these operations, the compensation is performed in place, to conserve

memory.

4,22  Pre-Emphasis Filtering

Before the LPC coefficients are determined, the input data is filtered by a
first-order FIR filter. While filtering, the window is searched for the
maximum value. This is necessary to ensure that the data can be properly
scaled for the auto-correlation that follows. The pre_emp loop filters the
input data.

This filter multiplies the delayed value and the filter coefficient, then adds
the product to the current sample. The subroutine uses the SB register to
check each sample for the number of redundant sign bits present. When
the loop is completed, SB holds the negative number that corresponds to
the number of growth bits in the maximum value of the window. The last
step of the loop saves each output sample (written over the input), and
prepares the MR register for the next multiply with round operation.



GSM Codec

423  Auto-Correlation

The program uses the auto_corr loop for auto-correlation of the filtered
input window to calculate the reflection coefficients for the entire window.
To prevent an overflow during this procedure, the input data is scaled
appropriately.

To compute the scale factor, the subroutine searches the input window for
the maximum value, and determines the number of redundant sign bits
(growth bits). The window is multiplied by a scale factor to insure that
there are three redundant sign bits to handle any growth during the auto-
correlation. The search operation is completed in the previous filtering
section. The code loop labeled scale adjusts the data to ensure the

- necessary number of growth bits.

The corr_loop loop determines the first nine terms of the auto-correlation
sequence. The auto-correlation is the sum of the products of the signal
with itself offset for k = 0-8. The terms of the sequence are used to
compute the reflection coefficients.

The auto-correlation code sets two pointers to the data areas (I1, I5), one
pointer to the output array (I6), and uses another pointer as a down-
counter for the inner loop (data_loop). Since the inner loop executes one
less time for each successive value of the auto-correlation sequence, the
CNTR is set to 12 for each new auto-correlation term.

After data_loop is completed, the next term of the sequence is in the MR
register. This value is saved in the output array after incrementing the
pointer to the data array, and decrementing the down-counter.

When corr_loop is completed, all nine terms of the auto-correlation
sequence have been generated and stored in the double precision array
L_ACEK(). The input data is rescaled by the rescale loop before the reflection
coefficients are computed.

4.24  The Schur Recursion

The theory behind any LPC voice coder is that the throat can be modeled
as a series of concentric cylinders with varying diameters. An excitation
signal is passed through these cylinders, and produces an output signal. In
the human body, the excitation signal is air moving over the vocal cords.
In a digital system, the excitation signal is a series of pulses input to a
lattice filter with coefficients that represent the sizes of the cylinders.
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An LPC system is characterized by the number of cylinders it uses for the
model. The DMR system uses eight cylinders, therefore, eight reflection
coefficients must be generated. This system uses the Schur recursion to
efficiently solve for each coefficient.

After a coefficient is determined, two equations are re-computed and used
to solve for the next coefficient. The following equations are used:

ABS[P(1)]
') = 50y x SIGN[P(1)]
P(0)=P(0) +P(1) xr(n)
P(m)=P(m+1)+r(n)xK(9—-m) form=1-8-n
K(9-m)=K(9-m)+r(n)xP(m+1)

forn=1-8

The P() and K() arrays are initialized with values from the auto-correlation
sequence determined earlier. If during the computation, the value of
ABS[P(1)] + P(0) is greater than or equal to one, all r-values are set to zero,
and the program proceeds with the transformation of the r-values to
Logarithmic-Area-Ratios (LARs) described in the next section.

Before initializing the P() and K() arrays, the double precision auto-
correlation sequence L_ACF() is normalized. The set_acf loop normalizes
each of the nine values and places them in the array acf(). The SE register
is initialized before entering the loop by the EXP instruction of the shifter.
The first value of the auto-correlation sequence is always the largest value
of the sequence. The normalization of the rest of the sequence is based on
the number of redundant sign bits in the first value.

The create_k loop copies the values of the normalized auto-correlation
sequence acf() into the appropriate locations in the P() and K() arrays.

The compute_reflec loop actually implements the Schur recursion. The 12
and I3 pointers are set to the beginning of the two arrays used to compute
the r-values. The absolute values of P(1) and P(0) are compared. If the
divide produces an invalid result (r > 1), the code executes a JUMP
instruction to skip the remaining computations. Since this test is also
performed after the exit from this loop (and since the P() array is not
altered if the JUMP is executed) the program eventually jumps to the
zero_reflec code block, and sets each r-value to zero.

If the divide is valid, it is computed with the ADSP-2100 family divide
instructions. The DIVS command computes the sign bit of the quotient,
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and 15 DIVQs compute the remaining bits. These commands produce the
16-bit value in the AYO register. After the division, another test is
performed to see if the original dividend and divisor are equal (the
division instruction does not saturate), if so, the quotient is saturated to
32767. The sign of the quotient is determined from the original sign of
P(1), and the r-value is stored in the result array.

The new value for P(0) is computed according to the equation shown
above. The two equations are re-computed in the schur_recur loop. The
counter for this loop is set from the I6 register, which is used as a down-
counter.

The compute_reflec loop generates the first seven reflection coefficients. The
eighth r-value is computed outside of the loop. The code outside the loop
is identical to the code inside, but it is not included in the loop since the
K() and P() arrays do not need to be re-calculated after the final r-value is
computed.

425 Transformation Of The Reflection Coefficients

The reflection coefficients generated by the Schur recursion are
constrained to be in the range -1 < r() < 1. To produce a value that can be
more easily quantized into a small number of bits, the following equation
transforms the reflection coefficients to Logarithmic-Area-Ratios (LARs):
This transformation process is similar to logarithmic companding used in

LAR(i) = Log,, -+
o T 1=-r(1)

log-PCM coding. Taking the logarithm of a number in a fixed precision n-
bit machine allocates more bits for the smaller values, and tends to
saturate for larger values.

In the implementation of the encoder, the logarithm is approximated with
a linear segmentation (as in log-PCM) to simplify the computation. Instead
of the divide and logarithm operations, the segmentation simplifies to
multiplies, adds, and compares.

The code that transforms the reflection coefficients starts at label real_rs.
The compute_lar loop executes once for each r-value, and produces one
LAR-value for each iteration. The three values that ternp can become are
computed first, and stored in various registers. The final ELSE value is left
in AR, which holds the result. The inner IF statement is checked, and if
true, AR is set with the appropriate temp value.
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The first IF statement is checked last. This ensures that AR holds the
correct value for temp. The last step of the loop generates the sign value for
temp, and stores the LAR value.

426 Quantization & Coding Of The Logarithmic-Area-Ratios
The LARs produced in the last section of the program must be quantized
and coded into a limited number of bits for transmission. The quantize_lar

loop computes the following equation to generate the coded LARs or
LARcs.

LAR_(i) = Nint[A(i) x LAR(i) + B(i)]

The function Nint defines the nearest integer value to its input. Since each
LAR has a different dynamic range, they are coded into varying word
sizes. Using a table, the values for A() and B() are defined to reflect these
differences. In addition to A() and B(), the table defines the maximum and
minimum values for each LARc. After each LAR¢() is computed, it is
saturated at the appropriate value.

To implement this coding in the program, several Index (I) registers are set
to data arrays representing a table. The AXO0 register is set to 256 and is
used for rounding the results within the loop.

The code is a straightforward implementation of the recommendation. The
first multiply computes A() x LAR(), and the value for B() is added to the
product. This sum, which is rounded by the addition of AX0, is
downshifted nine bits for saturation. After limiting, the minimum value is
subtracted from the final value to produce the LAR() that is transmitted.

The eight LARcs are copied from their array to the xmit_buffer that holds
the entire window of 76 coefficients to be transmitted. A similar transfer is
executed every time some of the code words are available for
transmission.

4.2.7  Decoding Of The Logarithmic-Area-Ratios

The LARs that were just coded are now decoded (using the decode_larc
subroutine), and used in the short term analysis section. The encoder uses
the decoded LARs because that information matches the information that
the receiving decoder uses. This lets the encoder and decoder produce
results based on the same data.
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The decoded LARs (or LARpp) are calculated from the coded LARs
(LARcs) with the following equation:

LAR_(i)= LAR()‘ B(i)

A(l)
To simplify the implementation of this equation, a table in memory
contains the reciprocal of A(i). The equation becomes a subtraction and a
multiply, which is faster than a divide.

The same decoding subroutine is used in the encoder and decoder, so the
code is written as a separate subroutine that can be called from either
routine. The decode_larc subroutine is located near the end of the listing.

This subroutine is a straightforward implementation of the
recommendation. The minimum value for the current LAR( (from the
table) is added to the coded LARc. This value is upshifted ten bits, and B()
(upshifted one bit) is subtracted. This remainder is multiplied by the
reciprocal of A(). The final value is doubled before being stored in the
LARpp() array.

4.2.8  Short Term Analysis Filtering

Once the LARs are decoded, they are transformed back into reflection
coefficients and used in an 8-pole lattice filter. The short term analysis
filter uses the input speech window and reflection coefficients as inputs,
and produces a difference signal as output. The difference signal

hoty thao actiial innit ch wrindows and
represents the difference between the actual input speetn winadw, ana

the speech that would be generated based only on the reflection
coefficients.

The difference signal is used by the long term predictor (LTP) section of
the codec. The LTP is described in Section 4.2.9.

To avoid transients that could occur with a rapid change of filter
coefficients, the LARs are linearly interpolated with the previous set of
LARs. The input speech frame is broken into four sections (not at the same
boundaries as sub-windows), and a different set of interpolated
coefficients is used for each section. A table defines the coefficients that are
used for each section of the speech frame.
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When the interpolated LAR value is generated for each section, it must be
transformed from a Logarithmic-Area-Ratio back into a reflection
coefficient. This sequence must also be performed in the decoder. To
minimize code, the st_filter subroutine, called by the encoder and decoder,
interpolates, transforms, and executes the short term filter for each section
of the input frame.

This subroutine is similar for the encoder and decoder except that
different 8-pole lattice filters are called for the encoder and decoder. This
is easily coded as an indirect call through one of the index registers.
Register 16 is set to the address of st_analysis (for the encoder) and the
indirect call (I6) instruction jumps to that subroutine.

The LARs are interpolated at four points in the st_filter routine. The first
section’s coefficients are interpolated by the k_end_12 loop. Every k_end_xx
code loop uses the old_larpp array (pointed to by 14) and the larpp array
(the current decoded LARs) to produce a weighted sum of the two, and
stores the output in the array larp. The larp array is transformed into
reflection coefficients that are used by the short term filter.

4.2.8.1 Transformation Of The LARs Into Reflection Coefficients
Before transmission, the computed reflection coefficients are transformed
into LARs to provide favorable quantization characteristics. Although this
transformation is useful for transmission, the LARs must be transformed
back into reflection coefficients before they can be used as inputs to the
synthesis filter.

The make_rp subroutine transforms the LARs back into reflection
coefficients and stores them in the rp() array. This subroutine’s
implementation is similar to the subroutine that codes the LARs. The
result for each IF-THEN-ELSE test is created first, with the final ELSE
value stored in the AR register. The condition of each IF statement is
tested from the inside out. The final test of the loop generates the sign of
the output. The rp() array is stored in program memory for easy fetching
during the filtering subroutine.
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4.2.8.2 Short Term Analysis Filtering
The short term analysis filter implements a lattice structure by solving the
following five equations:

D) do(k)=s(k)

2) u,(k)=s(k)
3) di(k)=d,_,(k)-r';xu_(k-1) withi=1-8

i—

4) u;(K)=u, ,(k-1)+r',xd, (k) withi=1-8
5) d(k)=d,(k)

The st_analysis subroutine computes the five equations shown above.
Several registers are setup before calling this subroutine. The CNTR
register is set with the number of output samples to be generated during
this call. The st_compute loop executes once for each output sample created
generated. Pointers to the rp() coefficient and u() delay line are setup, and
the input sample is fetched.

The st_loop loop calculates the two iterative equations (3 and 4) shown
above. The first multiply prepares the MR register and loads the
coefficient and delay values. The second and third lines of the loop
generate a new uj() value (equation 4). The fourth line saves the previous
value of u() (for use in the next iteration) and prepares the MR register.
The final two lines generate a new dj() value (equation 3) that is held in
the AR register.

When the st_loop is exited, the value for dg(k) is in the AR register. This
value is stored in the output array, and the loop re-executes as necessary.

429 Calculation Of The Long Term Parameters

The long term calculations of the LPC speech codec are performed four
times for each window of data. The calculations are the same for each sub-
window, so they are implemented as a set of subroutines that are called
four times per frame.

Once the calculations are complete for a sub-window, the 17 coefficients
(Nc, bc, mc, xmaxc, and xMc[0-12]), which are stored contiguously, are
copied to the xmit_buffer. Since the previous sub-window’s coefficients do
not need to be saved, the same memory locations are used by the next sub-
window.

215



216

GSM Codec

The code must set the I3 register to the input array before the first call to
the subroutines. The I3 register is automatically incremented by the
necessary number (40) during the It_analysis section of code.

4.2.9.1 Long Term Analysis Filtering

The long term predictor (LTP) produces two coefficients to describe each
sub-window. A long term correlation lag (Nc) represents the maximum
cross-correlation between samples of the current sub-window and the
previous two sub-windows. A gain parameter (bc) represents the
quantized ratio of the power of delayed samples to the maximum cross-
correlation value.

The value for Nc is determined by computing the cross-correlation
between the short-term residual signal of the current sub-window and the
signal of the previous sub-windows. The cross_loop loop computes each
value of the cross-correlation and puts the maximum lag in AX1.

The transmitted value of Nc is not coded, but sent using a 7-bit word.

The coded value for bc is determined using the table_dIb lookup-table. This
table holds values that indicate the ratio of the numbers. The coded value
of bc is the index into a table that satisfies the relationship.

The Itp_computation subroutine searches the input sub-window for a
maximum value. When the find_dmax code loop is exited, SB holds a
negatlve number that corresponds to the number of redundant sign bits
present in me maximum leue UI IIIB buD'WlIILlUW

The init_wt loop uses the value determined above, and shifts the data to
ensure that there is at least six redundant sign bits for growth during the
cross-correlation execution.

The execution of the cross-correlation is similar to the execution of the
auto-correlation performed for the Schur recursion. The only difference is
that the auto-correlation uses the same signal for both inputs, while the
cross-correlation uses two different signals, dp() and wt(). Each term of the
cross-correlation is checked, and if it exceeds the current maximum, the
new value is taken as the maximum, and its index is saved as Nc. When
the cross_loop loop is exited, the value in AX1 is the final value of Nc.
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The power loop determines the power of the maximum cross-correlation
and the gain (bc) value. The value for bc is the ratio of the power of the
cross-correlation and the maximum value of the correlation. This ratio is
expressed as one of the four values in table_dlb, which is stored in data
memory. The transmitted value for bc is the index into the table that
satisfies the relationship.

4.2.9.2 Long Term Synthesis Filtering

The short-term analysis filter computes a residual signal and stores it in
the d() array. Using the LTP coefficients determined by this filter, an
estimated short-term residual signal, stored in the dpp() array, is
computed from the previously reconstructed short-term residual samples
from the dp() array and the new Nc and bc parameters.

From the values of the dpp() array, the long-term residual signal is
computed and stored in the e() array. The e() array will be applied to a FIR
filter to generate the residual pulse excitation (RPE) signal.

4.210 Residual Pulse Excitation Encoding Section

After the long-term residual signal is produced, it is sent through a FIR
filter to generate an excitation signal for the sub-window. After
decimation, the maximum excitation sequence is determined and coded
for transmission.

An Adaptive Pulse Code Modulation (APCM) technique codes the
sequence. The maximum value in the sequence is determined and

1 Tho ™
logarithmically coded into six bits. The sequence is normalized and

uniformly coded into three bits.

4.2.10.1 Weighting Filter

The output of the long term analysis filtering section, e(), is applied as an
input to an FIR filter. The filter’s coefficients are stored in a table. This
section of code uses a special “block” filter that produces the 40 central
samples of a conventional filter. The x() output array is used in the RPE
grid selector described in the following section.

The compute_x_array loop implements the FIR block filter. The e() input
array is placed into the wt() temporary array with five zeros padded at
each end. The zero padding is necessary because the block filter
implementation tries to use values outside of the defined range of e().
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Pointers to the input and output arrays are initialized and the code enters
the compute_x_array loop. The first two operands of the convolution are
fetched, and the appropriate rounding value is placed in the MR register.
An inner loop is executed to compute the convoluted output value.

The final double precision output value must be scaled by four before the
MSW is stored. This is accomplished using two double-precision
additions. After the first addition, the AV (overflow) flag is checked. If an
overflow occurs, the output value is saturated and the second addition is
skipped. The MS part of the second addition is performed with the
saturation mode of the ALU enabled, which automatically causes
saturation if an overflow occurs.

4.2.10.2 Adaptive Sample Rate Decimation By RPE Grid Selection

The output of the weighting filter, put in the x() array, is examined to
determine the excitation sequence that is used. The x() array is decimated
into four sub-sequences. The sub-sequence with the maximum energy is
used as the excitation signal, and the value of m indicates the RPE grid
selection. The following formula performs the decimation:

Xm(i)=x(m+3x1)
where i=0-12, m=0-3

The find_mc loop determines the sub-sequence with the maximum energy.
The energy of each Xm() array is determined by the calculate_em loop. This
loop multiplies each element of the sequence (downshifted twice) by itself
and computes the sum. The value of m that indicates the sub-sequence
with the maximum energy is held in AX0.

Once the find_mc loop is completed, the value for mc is stored, and the
appropriate sub-sequence is copied into the wt() array. The code then
determines the maximum element of the xm() array and holds it in the AR
register for quantizing.

4.2.10.3 APCM Quantization Of The Selected RPE Sequence

The maximum value of the sequence is coded logarithmically using six
bits. The upper three bits of xmaxc hold the exponent of xmax, and the
lower three bits hold the mantissa. Once xmax is coded, the array can be
normalized without performing a division.

The xm() array is normalized by downshifting each element by the
exponent of xmaxc, and multiplying it by the inverse of the xmaxc’s
mantissa. The normalized array is uniformly quantized with three bits.
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The quantize_xmax loop performs the logarithmic quantization of xmax by
determining the exponent and mantissa, and then positioning them
appropriately. The call to get_xmaxc_pts decodes xmaxc, then returns to the
calling routine with the exponent and mantissa of xmax.

The compute_xm loop performs the normalization of xm(). The inverse of
xmax’s mantissa is read from a table and stored in MYO0, while the
magnitude of the downshift is stored in SE. After normalization, the upper
three bits of the result are biased by four, and stored in the xmc() array for
transmission.

4.2.10.4 APCM Inverse Quantization & RPE Grid Positioning

The xmc() array must be decoded for use as the excitation signal. The
subroutine rpe_decoding is used by the encoder and decoder. This
subroutine assumes that the coded mantissa of xmaxc is available in MX0,
and its exponent is in AY1.

The actual value for the mantissa is read from table_fac and stored in MY0,
while the adjusted exponent is stored in SE and the value of temp3 is
placed in AY1. Various pointers are initialized before entering the
inverse_apcm loop, which decodes the entire xmc() array. After decoding
each element, it is stored in the xmp() array.

The ep() array is reconstructed from the decoded xmc() array. The ep()
array is first set to zero over its entire length, then filled with the
interpolated, decoded values of the xmc() array. The intermediate xmp()
array is not used.

4.2.10.5 Update Of The Reconstructed Short Term Residual Signal

The final step of the encoder’s sub-window computation is to update the
short term residual signal, dp(). The process involves updating the array
and computing the new short term residual signal based on the
reconstructed long term residual signal and the long term analysis signal.
Both of these steps are completed by the update_dp_code loop.

The update_dp loop updates the dp() array by delaying the data one sub-
window. The fill_dp loop adds the dpp() array, generated by the long term
analysis filter, and ep(), the reconstructed long term residual signal, then
stores the result at the end of the dp() array.
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4.3 DECODER

Many of the sections in the decoder are also contained in the encoder, so
they have already been described. The three sections unique to the
decoder are the long term synthesis filter, the short term synthesis filter,
and the post processing. Variables that are unique to the decoder and
must be stored between calls have an “r” in their names, such as drp().

The decoder for the LPC speech codec creates an excitation signal for the
short term synthesis filter. The excitation window is created using the 17
sub-window coefficients that were generated by the encoder. The
excitation signal is used as input to a lattice filter with coefficients of the
eight decoded LARcs. The output of this filter is a full window of speech
data. The speech window is down-scaled and sent through a de-emphasis
filter before returning.

The dmr_decode subroutine computes the output speech window from the
76 input coefficients. The recv_data subroutine copies coefficients from the
input buffer to the appropriate location in memory. The transmitted
LARGcs are copied into their array and decoded using the decode_larc
routine described in section 4.2.8. These values are used by the short term
synthesis filter described below.

Computation of the sub-window data starts by copying the sub-window
coefficients into their arrays. A call to get_xmaxc_pts breaks the coded
value of xmaxc into its two parts for use by the rpe_decode routine (see
section 4.2.10.4). The It_predictor routine takes the reconstructed ep() array
and computes the new values for the short term reconstructed residual
signal drp(). Four calls to these subroutines are executed to compute the
excitation signal for the short term synthesis filter.

The post_process loop completes the computation of the output window,
then control is returned to the calling routine.

4.3.1  Short Term Synthesis Filtering

The decoder uses short term synthesis filtering that is almost identical to
the encoder’s short term synthesis filtering. The st_filter routine is called,
but with different parameters. The I6 register is set to the address of
st_synthesis, the lattice filter used by the decoder, and register 14 is set to
the address of old_larpp, the array that holds the previous LARs for the
decoder. Address register I0 points to a temporary array that holds the
reconstructed short term residual signal that was generated for each sub-
window.

Section 4.2.9.1 has a complete description of the st_filter routine. Section
4.2.9.2. describes the transformation of LARs into reflection coefficients.
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4.3.1.1 Short Term Synthesis Filter

The short term synthesis filter is an implementation of an 8-pole lattice
filter. It uses the reconstructed short term residual signal as an excitation,
and computes the reconstructed speech signal as output. LARs that are
averaged and transformed are used as the coefficients for the filter.

The lattice filter used in the decoder is different from the filter used in the
encoder. It is defined by the following five equations.

1) sro(k)=dr'(k)
2) sr(k)=sr,_y(K)—rr',_ xvy (k-1) withi=1-8
3) vou(k)=vy (k=1)+rr',  xsr(k) withi=1-8
4 sr(k)=sr,(k)
5) vo(k)=sry(k)

The code that solves these equations is contained in the subroutine
st_synthesis. The st_synth_compute loop generates one output value (sr)
during each pass of the loop, while st_synth_loop recursively solves the
two inner equations.

The first two instructions of the st_synth_loop loop generate a new value
for sr(j). The next three instructions generate the new value for v(g.;). The
address modification that points to the v() array uses a non-sequential
modifier.

The first fetch to the v() array reads v(7) and points to v(6). The first fetch
in the loop reads v(6) and modifies the pointer to v(8). The last instruction
of the loop writes to the v() array, places the updated value in v(8), and
modifies the pointer to v(5) for the next read. After the st_synth_loop is
exited, the code must modify the pointer so the next write is to v(0).

4.3.2 Long Term Synthesis Filtering

The long term synthesis filtering used in the decoder takes the lag (Nc),
gain (bc), and reconstructed long term residual signal in ep() and
generates the reconstructed short term residual signal in drp(). This signal
is used as an input to the short term filter.
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The received lag coefficient is checked to ensure that a transmission error
did not cause an inappropriate value to be received. If the value falls
outside its permissible range, it is set to the previous value. The decoded
gain value is multiplied by the previous reconstructed short term residual
signal (drp()) and subtracted from the reconstructed long term residual
signal (ep()) to generate the reconstructed short term residual signal for
the current sub-window. Also, the drp() array is updated by the
subroutine.

The compute_drp loop generates the new set of reconstructed short term
residual values, and update_drp updates (or delays) the values of the drp()
array.

43.3  Post Processing

The final stage of the decoder involves the de-emphasis filtering and
down scaling. These two operations are performed by the post_process
loop. A first order IIR filter is applied to the output of the short term
synthesis filter. The first two instructions of the loop accomplish this while
the next two instructions double the value of the output.

The last two instructions mask the three LSBs of the output, and store the
final value in the output array.

4.4 BENCHMARKS & MEMORY REQUIREMENTS

The following listings implement the entire set of GSM 06 series speech
functions on the ADSP-2101. This code is validated to pass all available
GSM test vectors. This code is also available on the diskette included with
this book.

Table 4.1 presents benchmarks for the system that include encoding and
decoding, voice activity detection, comfort noise insertion and generation,
and discontinuous transmission functions. The ADSP-2100 family
instruction set lets you code the entire set of GSM speech functions into
1988 words of program memory and 964 words of data memory. All the
code fits in the internal memory of the ADSP-2101 or the ADSP-2171
microcomputer.

These benchmarks are for ADSP-2101 (13 MHz instruction rate) and
ADSP-2171 (26 MHz instruction rate) GSM systems with a 20 ms frame.
Most of the time in the frame is unused, leaving ample time and
processing power to implement additional features, such as acoustic echo
cancellation.



ADSP-2101 (13 MHz)
RPE-LTP LPC Encoder
RPE-LTP LPC Decoder
Voice Activity Detector

Total of 06 series functions
Free

ADSP-2171 (26 MHz)
RPE-LTP LPC Encoder
RPE-LTP LPC Decoder
Voice Activity Detector

Total of 06 series functions
Free

GSM Codec 4

Cycle Count
(maximum
worst case)

49300
14400
02141

65841

49300
14400
02141

65841

Table 4.1 GSM Implementation Benchmarks

4.5 LISTINGS

This section contains the listings for this chapter.

Time
Required
(ms)

Processor
Loading
(%)

19.0
05.5
00.9

25.4 %
74.6 %

9.5
2.75
0.45

12.7 %
87.3 %
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{

GSM_RSET.DSP
Analog Devices Inc. DSP Division
One Technology Way, Norwood, MA 02062
DSP Applications: (617) 461-3672

This routine performs all of the necessary initialization of variables
in all of the various GSM speech processing routines. All of these
variables are defined in RAM, in either Program or Data Memory.

The subroutine “reset_codec” must be called following DAG initialization
after system power-up or system reset, before any other subroutine is
called and before the data acquisition routine is enabled.

This program must also be called to set the initial state prior to
validation with the GSM test vectors.

ADSP-2101 Execution cycles: 894 maximum

Release History:

___Date___ _Ver__ Comments
01-Sep-89 58 Initial implementation
10-Jan-90 1.00 Second Release
01-Nov-90 2.00 Third release

.MODULE software_reset;
.ENTRY reset_codec;

{ from 06.10 (encoder/decoder) and 06.12 (comfort noise in encoder)
and 06.31 (dtx in encoder) }

.EXTERNAL u, dp, nrp;

.EXTERNAL oldlar_buffer, oldxmax_buffer, cni_wait;
.EXTERNAL speech_count, oldlar_pntr, oldxmax_pntr;
.EXTERNAL old_LARrpp, old_LARpp;

.EXTERNAL drp, mp, L_z2_1, L_z2_h;

.EXTERNAL z1l, msr, Vv;

{ from 06.32 (voice activity detection) }
.EXTERNAL rvad, normrvad, L_sacf, L_sav0;
.EXTERNAL pt_sacf, pt_sav0, L_lastdm;
.EXTERNAL oldlagcount, veryoldlagcount;
.EXTERNAL e_thvad, m_thvad, adaptcount;
.EXTERNAL burstcount, hangcount, oldlag;

{ from 06.31 (dtx codeword decoding) and 06.11 (sub and mute) }
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.EXTERNAL valid_sid_buffer, sub_n_mute, sid_inbuf, taf_count;
{ from 06.12 (comfort noise in decoder) }

.EXTERNAL seed_lsw, seed_msw;

{ from shell }

.EXTERNAL speech_1, speech_2, coeff_codeword;

reset_codec:AX0 = 0;

I0 = "“L_sacf;
CNTR = 54;
CALL zero_dm;

I0 = "L_sav0;
CNTR = 72;
CALL zero_dm;

I0 = ~speech_1;
CNTR = 160;
CALL zero_dm;

I0 = "gpeech_2;
CNTR = 160;
CALL zero_dm;

I0 = ~drp;
CNTR = 160;
CALL zero_dm;

I4 = ~dp;
CNTR = 120;
CALL zero_pm;

I0 = “msr; { msr, old_LARrpp([8], vI[9] }
CNTR = 18;
CALL zero_dm;

I0 = "u; { ul8], oldLARpp(8], zl, L_z2_h, L_z2_1, mp }
CNTR = 20;

CALL zero_dm;

I0 = "L_lastdm; { L_lastdm[2], oldlagcount, veryoldlagcount, }

CNTR = 6; { adaptcount, burstcount }
CALL zero_dm;

(listing continues on next page)
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I0 = “sub_n_mute; { sub_n_mute, sid_inbuf
CNTR = 2;
CALL zero_dm;

DM (coeff_codeword) = AXO0;

AXO0 = 40;
DM(oldlag) = AXO;
DM (nrp) = AXO0;

AX0 = 15381;
DM (seed_1lsw) = AXO;
AXO0 = 7349;

DM (seed_msw) = AXO;
AX0 = 1;

DM (speech_count) = AX0;
AX0 = -4;

DM (cni_wait) = AXO;
AXO = -1;

DM (hangcount) = AXO0;
AX0 = 20;
DM(e_thvad) = AXO0;
AX0 = 31250;

DM (m_thvad) = AXO0;

AX0 = -7;
DM (normrvad) = AXO0;

AXO = -24,’
DM (taf_count) = AXO0;

AX0 = ~L_sacf;

DM (pt_sacf) = AXOQ;
AX0 = "~L_sav0;

DM (pt_sav0) = AXO;
AX0 = "oldlar_buffer;

DM(oldlar_pntr) = AXO0;
AX0 = "oldxmax_buffer;
DM (oldxmax_pntr) = AXO;

I0 = "rvad;
AXO0 = 24576;
DM(IO,M1) = AXO;
AX0 = -16384;
DM(IO,M1) = AXO;

AX0 = 4096;
DM(IO,M1) = AXO;
AXO = 0;

CNTR = 6;

CALL zero_dm;
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I0
AXO

ihon

DM(IO,

AX0 =

DM(IO,

AXQ =

DM (IO,

AX0 =

DM(IO,

AXQ0 =

DM(IO,

AX0 =

DM(IO,

AXO =

DM(IO0,

AXO =

DM (IO,

AX0 =

DM(IO,

RTS;

zero_dm: DO dmloop UNTIL CE;
dmloop: DM (IO, M1)

RTS;

zero_pm: DO pmloop UNTIL CE;
pmloop: PM(I4,M5)

RTS;

.ENDMOD;

“valid_sid_buffer;

42 ;
M1)
39;
M1)
21;
M1)
10;
M1)
9;
M1)
4;
M1)
3;
M1)
2;
M1l)
0;
M1)

AXO0;
AXO;
AXO0;
AXO0;
AXO;

AXO;

AXO;

AXO;

= AXO0;

= AXO;

GSM Codec 4

Listing 4.1 Initialization Routine (GSM_RSET.DSP)
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{ GSM0610.DSP

These subroutines: dmr_encode and dmr_decode, represent a full duplex codec
for the Pan-European Digital Mobile Radio Network. The code implements a
Linear Predicitive Coder (LPC) which incorporates a Long Term Predictor
with Regular Pulse Excitation (LTP-RPE), as defined by the CEPT/GSM 06.10
specification. This code also includes support for the DTX functions of the
GSM specification. Calls are made to Voice Activity Detection (06.32) and
comfort Noise Insertion (06.12) subroutines. This code has been verified
and successfully transcodes the GSM 06.10 Test Sequence Version 3.0.0 dated
April 15, 1988. The -Dnovad switch must be used at assembly to turn of
Voice Activity Detection during validation. In-line comments refer to
various sections of this recommendation. It is assumed that the reader is
familiar with that document.

Release History:
03-Feb-89 32 Initial release.
20-Jun-89 56 Fix reflect coef sect to pass all 3.0.0 vectors.
10-Jan-90 1.00 Second release.

Information furnished by Analog Devices is believed to be accurate and
reliable. However, no responsibility is assumed by Analog Devices for its
use; nor for any infringement of patents or other rights of third parties
which may result from its use. Portions of the algorithms implemented in
this code may have been patented; it is up to the user to determine the
legality of their application.

Assembler Preprocessor Switches:

-cp switch must always be used when assembling
-Dnovad switch disables VAD for validation of 06.10
-Dalias switch aliases some variables to save RAM space
-Ddemo switch enables several functions necessary for

the eight-state demonstration

Calling Parameters:
I0 — Input Speech Buffer (for dmr_encode)
I1 —> Coefficient Buffer (for both)
I2 — Output Speech Buffer (for dmr_decode)
AX0 -> Silence Descriptor Frame flag (for dmr_decode)

MO=0; M1l=1; M2=-1; M3=2;
M4=0; M5=1; M6=-1;

L0=0; L1=0; L2=0; L3=0;
L4=0; L5=0; L6=0; L7=0;

Return Values:
I1 —> Coefficient Buffer (for dmr_encode)
I2 —> Output Speech Buffer (for dmr_decode)
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Altered Registers:

AXO0, AX1l, AYO,

MX0, MX1,
SI, SE,
10, I1,
MO, M7

ADSP-2101 Computation Time

Encoder
Decoder

State:

speech only

comfort

speech hangover

.MODULE/RAM/BOOT=0

AY1l, AR, AF,
MY0, MYl, MR, MF,
SB, SR,

I2, I3, I4, I5, I6

(without Voice Activity Detection):

49300 cycles maximum
14400 cycles maximum

Encoder Decoder

46900 14000 cycles maximum
noise generation 47200 14400 cycles maximum

49300 14000 cycles maximum

Digital_Mobile_Radio_Codec;

dmr_decode, schur_routine, divide_routine;

update_periodicity;

Conditional Assembly.

4

.ENTRY dmr_encode,

.EXTERNAL comfort_noise_generator;
.EXTERNAL vad_routine,

.EXTERNAL vad, lags;

{

{ Use (asm2l -cp -Dalias)

to alias some variables to save RAM

#ifdef alias

. INCLUDE
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

#else

. INCLUDE

#endif
{

<var0610.ram>;
r dpp
k dpp+25
acf dpp+8
p dpp+l7
LAR dpp+25
rp wt
LARp wt+8
LARpp DPP
LARc wt
ep wt
mean_larc dpp+17

<var0610.h>;

.INCLUDE <init0610.h>;

{

Global variable declarations

{variables used in the encoder }

.GLOBAL
.GLOBAL

u, dp, L_ACF,
0ld_LARpp, mp,

scaleauto;
L_z2_1, L_z2_h, z1;

(listing continues on next page)
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{variables used in the decoder }
.GLOBAL nrp, drp, old_LARrpp, msr, V;

{variables used for comfort noise insertion in the encoder}
.GLOBAL cni_wait, speech_count, oldlar_pntr, oldxmax_pntr;
.GLOBAL oldlar_buffer, oldxmax_buffer, sp_flag;

{variable used as a working buffer to alias VAD variables}
.GLOBAL wt;

{

{

Encoder Subroutine

dmr_encode: ENA AR_SAT; {Enable ALU saturation}
DM (speech_in)=I0; {Save pointer to input window}
DM (xmit_buffer)=I1; {Save pointer to coeff window}
MX1=H#4000; {This multiply will place the}
MY1=H#100; {vale of H#80 in MF that will}
MF=MX1*MY1 (SS); {be used for unbiased rounding}

{ This section of code computes the downscaling and offset compensation
of the input signal as described in sections 4.2.1 and 4.2.2 of the

recommendation}
I10=DM (speech_in) ; {Get pointer to input data}
I1=I0; {Set pointer for output data}
SE=-15; {Commonly used shift value}
MX1=H#80; {Used for unbaised rounding}
AX1=16384; {Used to round result}
MY0=32735; {Coefficient value}
AY1=H#7FFF; {Used to mask lower L_z2}
MY1=DM(z1l) ;

MRO=DM(L_z2_1);
MR1=DM(L_z2_h);

DIS AR_SAT; {Cannot do saturation}
AR=MRO AND AY1l, SI=DM(I1,M1); {Fill the pipeline}
CNTR=window_length;
{ DO offset_comp UNTIL CE;}
gsml: SR=ASHIFT SI BY -3 (HI);{Shift input data to zero the}
SR=LSHIFT SR1 BY 2 (HI); {the LSB and half data}
AX0=SR1, SR=ASHIFT MRl (HI); {Get upper part of L_z2 (msp)}
SR=SR OR LSHIFT MRO (LO); {Get LSB of L_z2 (lsp)}
MR=MX1*MF (SS), MX0=SRO; {Prepare MR, MXO=msp}
MR=MR+AR*MY0 (SS), AY0=MY1l; {Compute temp}
AR=AX0-AY0, AYO=MR1; {Compute new sl}
SR=ASHIFT AR BY 15 (LO); {Compute new L_s2}
AR=SRO+AY0, MY1=AX0; {MY1l holds zl, L_s2+temp is in}
AF=SR1+C, AY0=AR; {SR in double precision}
MR=MX0*MYO0 (SS); {Compute msp*32735}
SR=ASHIFT MR1 BY -1 (HI); {Downshift by one bit }
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AR=SRO+AYO0,
MRO=AR, AR=SR1+AF+C;
MR1=AR, AR=MRO+AY0;
SR=LSHIFT AR (LO);

AR=MR1+C,

GSM Codec 4

AYO0=AX1;

SI=DM(I1,M1);

SR=SR OR ASHIFT AR (HI);
offset_comp: DM(IO,M1)=SR0O, AR=MRO AND AY1l;{Store result, get next lsp}
{?} IF NOT CE JUMP gsml;

DM(L_z2_1)
DM(L_z2_h)

=MRO ;
=MR1;

DM (z1)=MY1;
ENA AR_SAT;

{Compute new L_z2 in }
{double precision MRO=L_z2}
{MR1=L_z2, round result }
{and downshift for output}
{Get next input sample}

{Save values for next call}

{Re-enable ALU saturation}

{ This section of code computes the pre-emphasis filter and
the autocorrelation as defined in sections 4.2.3 and 4.2.4 of
the recommendation}

MX0=DM (mp)

i

MY0=-28180;

MX1=H#80;
MR=MX1*MF
SB=-4;

(SS) ;

I0=DM (speech_in) ;
CNTR=window_length;

{Get saved value for mp}

{MY0 holds coefficient value}
{These are used for biased}
{rounding}

{Maximum scale value}
{In-place computation}

{ DO pre_emp UNTIL CE;}
gsm2: MR=MR+MX0*MY0 (SS), AY0=DM(IO,MO);
AR=MR1+AY0, MXO0=AYO;
SB=EXPADJ AR; {Check for maximum value}
pre_emp: DM(I0,M1)=AR, MR=MX1*MF (SS); {Save filtered data}
{?} IF NOT CE JUMP gsm2;
DM (mp) =MX0;
AY0=8R; {Get exponent of max value}
AX0=4; {Add 4 to get scale value}
AR=AX0+AYO0;

DM (scaleauto) =AR;
IF LE JUMP auto_corr;

AF=PASS 1;
AR=AF-AR;
SI=16384;
SE=AR;

I0=DM (speech_in);

I1=I0;

SR=ASHIFT SI

(HI) ;

AF=PASS AR, AR=SRl;

MX1=H#80;
MR=MX1*MF
CNTR=window_length;

(ss),

MYO0=DM(IO,M1);

{Save scale for later}
{If 0 scale, only copy data}

{Output writes over the input}

{SR1 holds temp for multiply}
{Used for unbiased rounding}
{Fetch first wvalue}

(listing continues on next page)
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{ DO scale UNTIL CE;}
gsm3: MR=MR+SR1*MYO0 (SS), MY0=DM(IO,M1); {Compute scaled data}
scale: DM(I1,M1)=MR1l, MR=MX1*MF (SS); {Save scaled data}

{?} IF NOT CE JUMP gsm3;

auto_corr: Il=DM(speech_in); {This section of code computes}
I5=11; {the autocorr section for LPC}
I2=window_length; {I2 used as down counter}
I16="L_ACF; {Set pointer to output array}
CNTR=9; {Compute nine terms}
{ DO corr_loop UNTIL CE;}
gsmé : I0=I1; {Reset pointers for mac loop}
I4=1I5;
MR=0, MX0=DM(IO,M1); {Get first sample}
CNTR=I2; {I2 decrements once each loop}
{ DO data_loop UNTIL CE;}
gsmb : MYO=DM (I4,M5);
data_loop: MR=MR+MX0*MY0 (SS), MX0=DM(IO,M1);
{?} IF NOT CE JUMP gsm5;
MODIFY (I2,M2); {Decrement I2, Increment I5}
MYO=DM(I5,M5);
DM (I6,M5)=MR1; {Save double precision result}
corr_loop: DM (I6,M5)=MRO; {MSW first}

{?} IF NOT CE JUMP gsm4;

I0=DM (speech_in); {This section of code rescales}
SE=DM (scaleauto) ; {the input data}
I1=1I0; {Output writes over input}

SI=DM(IO,M1);
CNTR=window_length;

{ DO rescale UNTIL CE;}
gsmb6 : SR=ASHIFT SI (HI), SI=DM(IO,M1);
rescale: DM (I1,M1)=SR1l;

{?} IF NOT CE JUMP gsmé6;
call vad_routine; {determine vad state}

{***x*x This section of code sets the Voice Activity Flag (vad) and, if

vad has been inactive four or more cycles (cni_wait), sets the
Comfort Noise Insert Flag (cni_flag). *****}

set_flags: AXO = DM(vad); {AX0 holds vad}

{ Conditional Assembly

{ Use (asm2l -cp -Ddemo) to turn on the demonstration functions}
#ifdef demo
set_vad_demo:AY0 = 2;

MRO = M7;

AF = PASS 1;

AR = MRO AND AF; {extract force_vad_low}

IF NE AF = PASS 0;

AR = AX0 AND AF; {AR = vad AND /force_vad_low }
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AF = MRO AND AYO; {extract force_vad_high}
AR = AR OR AF; {AR = OR force_vad_high }
DM(vad) = AR;
AXO = AR;
M7 = 2;
#endif
{
{ Conditional Assembly
{ Use (asm2l -cp -Dnovad) to turn VAD off for validation }
#ifdef novad
AXO = 1;
DM(vad) = AXO0;
#endif
{
AY0 = DM(cni_wait);

AY1l = DM(speech_count) ;

MR
AR

AF
IF
IF

AR
IF

store_cni:
DM

0 = H#FFFF;
= -4;

= PASS AXO;
NE MR = 0;

NE JUMP store_cni;

= AY0 + 1;
LE MR = 0;

DM(cni_wait) = AR;

(cni_flag) = MRO;

AY0 = -24;

AF
IF
IF

AF
IF
store_spcnt

AF
IF
AF
IF
store_spflg

= PASS MRO;
NE AR = PASS AYO0;

NE JUMP store_spcnt;

= PASS AX0, AR =

NE AR = AY1l + 1;
:DM (speech_count)

= PASS AX0, AYl
NE AR = PASS 1;

= PASS AY1;
GE AR = PASS 1;
:DM(sp_£flag) = AR;

AY1;

(listing continues on next page)

{MRO holds cni_flag}
{AR holds cni_wait}

{If vad<>0,

{Increment cni_wait}
{If cni_wait <= 0,

set cni_flag=0}

cni_flag=0}
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{ Now begin section 4.2.5 of the recommendation}

set_up_schur:AYl = "“L_ACF; {in DM}
MYl = "acft;
MO = "r;

CALL schur_routine;

{ This section of code transforms the r-values to log-area-ratios
as defined in section 4.2.6 of the recommendation}

real_rs: Ib5="r; {This section of code computes}
T4="LAR; {the log area ratio from r}
CNTR=8;

{ DO compute_lar UNTIL CE; }

gsm7: AX0=DM(I5,M5) ;

AR=ABS AXO0;
SR=ASHIFT AR BY -1 (HI);{Generate temp>>1}

AX0=SR1; {AX0 holds temp>>1}

AY0=26112;

AX1=AR, AR=AR-AYO0; {Generate temp-26112}

SR=LSHIFT AR BY 2 (HI); {CGenerate (temp-26112)<<2}

AY0=31130;

AY1=11059;

AR=SR1, AF=AX1-AYO; {Default to AR=(temp-26112)<<2}

IF LT AR=AX1-AY1l; {AR=temp-11059 (if necessary)}

AY0=22118;

AF=AX1-AYO0;

IF LT AR=PASS AXO; {AR=temp>>1 (if necessary)}

IF NEG AR=-AR; {Compute sign of LAR[1]}
compute_lar: DM (I4,M5)=AR; {Save LAR[i]}

{?} IF NOT CE JUMP gsm7;
{****x* TIf necessary, the code will now average the LAR values, and write
new values into oldlar buffer. The proper LAR values are then

transmitted. *****}

AX0 = DM(vad) ;

AF = PASS AXO;

IF NE JUMP encode_lar; {Voice Activity, skip the rest}
AX0 = DM(cni_flag);

AF = PASS AX0;

IF EQ JUMP write_oldlar; {Not cni, so do not avg. oldlar}

{***** The code will now average the four previous frames lar values as
specified in GSM recommendation 06.12. Note that the values were
previously scaled. *****}

I4 = ~oldlar_buffer;
I5 = "“mean_lar;

I6 = 14;

M7 = 8;

AXQ = DM(I6,M7);
CNTR = 7;

234



GSM Codec 4

{ DO average_lar UNTIL CE;}
gsm8: MODIFY (I4,M5);
AY0 = DM(I6,M7);
AF = AX0 + AY0, AXO = DM(I6,M7);
AF = AX0 + AF, AXO = DM(I6,M7);
16 = I4;
AR = AX0 + AF, AX0 = DM(I6,M7);
average_lar: DM(I5,M5) = AR; {store mean_lar[il}

{?} IF NOT CE JUMP gsm8;
AY0 = DM(I6,M7);
AF = AX0 + AYO, AXO = DM(I6,M7);

AF = AX0 + AF, AXO = DM(I6,M7);

AR = AX0 + AF;

DM(I5,M5) = AR; {store mean_lar([8]}
M7 = 2; {restore M7}

{*****  This section of code will write the current lar values into one
of four (eight location) buffers in the thirty-two location
oldlar_buffer for use in the next frame. The values are also
scaled. ****%*}

write_oldlar:AX0 = "~oldlar_buffer;
AY1l = "oldlar_buffer + 32;

AR = DM(oldlar_pntr);
AF = AY1l - AR;
IF LE AR = PASS AXO;
I4 = AR; {Set the top of buffer}
SE = -2; {Roughly divide by four}
I5 = "LAR;
SI = DM(I5,M5);
CNTR = 8;
{ DO write_buffer UNTIL CE;}
gsm9: SR = ASHIFT SI (HI), SI = DM(I5,M5); {last read will be junk}
write_buffer: DM(I4,M5) = SR1;
{?} IF NOT CE JUMP gsm9;
DM(oldlar_pntr) = I4;

{***** This code will quantize the current LAR values and the mean_lar values, if
necessary. One of these is then sent to the transmit buffer. ***xx}

encode_lar: I6 = ~LAR;
I1 = ~LARcC;
CALL lar_encoding;

AX0 = DM(sp_flag);
AF = PASS AXO;
IF NE JUMP transmit_lar;

I6 = “mean_lar;
I1 = "“mean_larc;
CALL lar_encoding;
(listing continues on next page)
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transmit_lar: I1 = AX1; {The quantized LAR values}
CNTR=8; {can now be sent}
CALL xmit_data; {Copy to the output buffer}

{ Now, continue with GSM recommendation 4.2.8.}

CALL decode_larc; {Decode the LARcs }

I0=DM (speech_in) ; {Input/output of the st filter}
I6="st_analysis; {Use the st analysis routine}
I4="0l1ld_larpp; {Use the previous LARpp}

CALL st_filter; {Call st filter manager}

{ Compute sub-window information for each of the 4 sub-windows}
{***x* Check to see if Comfort Noise is being generated. *****}

AX0 = DM(sp_flag);
AF = PASS AXO0;
IF NE JUMP speech_frame;

AX0 = DM(cni_flag):
AF = PASS AXO;
IF NE JUMP comp_mnxmax;

silence_frame:AR = DM(mean_xmaxc) ;
JUMP xmit_cmfrtnois;

{****x Thig section will average the four xmax values from the previous
four frames as specified in GSM recommendation 06.12, section 2.1. Note
that the values have been pre-scaled. *****}

comp_mnxmax:I5 = “oldxmax_buffer;
AR = DM(I5,M5); {AR holds mean_xmax. }
AY0 = DM(I5,M5);
CNTR = 15;
{ DO avg_xmax UNTIL CE;}
avg_xXmax: AR = AR + AYO, AYO = DM(I5,M5); {Last read is junk.}

{?} IF NOT CE JUMP avg_xmax;

{**x*** Now xmax must be quantized. *****}

CALL quantize_xmax; {mean_xmaxc returned in AR.}
DM (mean_xmaxc) = AR;

{***** The transmit buffer is filled next. *****}
xmit_cmfrtnois:CNTR = 4;

AXO0 = 0;
I0 = DM(xmit_buffer);
{ DO xmit_sid UNTIL CE;}
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gsml0: DM(IO,M1) = AXO;
DM(IO,M1) = AXO;
DM(IO,M1) = AXO;
DM(IO,M1) = AR; {The fourth value is mean_xmaxc}
CNTR = 12;
{ DO zero_rpe UNTIL CE;}
zZero_rpe: DM(IO,M1) = AXO;
{?} IF NOT CE JUMP zero_rpe;
xmit_sid: DM(IO,M1) = AXO;

{?} IF NOT CE JUMP gsmlO0;

{***** The Silence Descriptor (SID) frame has been sent to the transmit
buffer. **x*xxx}

{*****  Must now compute the xmax values for the current frame. *****}

I3 = DM(speech_in);
I6="lags;
CNTR=4;
{ DO xmax_loop UNTIL CE;}
gsmll: CALL ltp_computation;
DM(I6,M5) = AX1; {AX1 holds Nc for sub-window}
CALL rpe_encoding;
xmax_loop: NOP;

{?} IF NOT CE JUMP gsmll;
JUMP finish;

{ This code implements the sub-window information for each of the 4
speech sub-windows.}

speech_frame:I3=DM(speech_in); {Only set input pointer once}
I6="lags;
CNTR=4;
{ DO enc_subwindow UNTIL CE;}
gsml2: CALL ltp_computation; {Compute LTP coefficients}
DM(I6,M5) = AX1; {AX1 holds Nc for sub-window}
CALL rpe_encoding; {Encode and decode RPE sequence}
I1="Nc; {Sub-window data can be sent}
CNTR=17; {17 coeffs per sub-window}
CALL xmit_data; {Copy to the output buffer}
enc_subwindow: NOP; {No CALL in last instr of DO}

{?} IF NOT CE JUMP gsml2;

{All the coded variables have been sent to xmit_buffer}

finish: CALL update_periodicity; {VAD (06.32) routine}
DIS AR_SAT;
RTS; {Return to caller}

(listing continues on next page)
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xmit_data: IO0=DM(xmit_buffer); {Copy coeffs to the output}
{ DO xmit UNTIL CE;} {buffer}

gsml3: AX0=DM(I1,M1);

xmit: DM (IO,M1)=AX0;

{?} IF NOT CE JUMP gsml3;
DM (xmit_buffer)=I0;
RTS; {Return from Encoder}

{ Subroutines for Encoder

{ This section of code quantizes and codes the LAR value produced above
as defined in section 4.2.7 of the recommendation}

lar_encoding:AX1 = I1; {Stores pointer to result}
I5="table_a; {This section of code computes}
TI4="table_b; {the quantizing/coding of LARs}
MX1l="table_mac; {Pointers are set to various}
MYl="table_mic; {data memory tables}
AX0=256; {Used for rounding}
CNTR=8;
{ DO quantize_lar UNTIL CE;}
gsmld: MX0=PM(I5,M5) ;
SI=I5;
MYO=DM(I6,M5);
MR=MX0*MYO (SS), AYO=PM(I4,M5); {temp=A[i]*LAR[1i]}
AF=MR1+AYO; {temp=A[i]*LAR[i]+B[i]}
I15=MX1;
AR=AX0+AF, AYO=PM(I5,M5); {Round result}
MX1=TI5;
SR=ASHIFT AR BY -9 (HI); {LARc[i] = temp>>9}
AR=SR1;
I5=MY1;
AF=AR-AY0, AY1=PM(I5,M5); {Test min/max}
MY1l=I5;
IF GT AR=PASS AYO; {Cap if above max}
AF=AR-AY1;
IF LT AR=PASS AY1l; {of below min}
AR=AR-AY1; {Subtract minimum value}
I5=SI;
quantize_lar: DM(I1,M1)=AR; {Save LARc[i]}
{?} IF NOT CE JUMP gsml4;
RTS;
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{ This subroutine computes the 8-pole short term lattice filter
as defined in section 4.2.10 of the recommendation}

st_analysis:SR1=H#80; {Used for unbaised rounding}

{ DO st_compute UNTIL CE;} {The counter is set by caller}

gsml5: I5="rp; {Point to decoded r-values}
I2="u; {Point to delay line}
AR=DM(I0,MO); {Get filter input}
AX0=AR; {Set sav=s[i], AXO is sav}
CNTR=8; {Compute all 8 poles}

{ DO st_loop UNTIL CE;}

gsmlé6: MYO=DM(I5,M5) ; {Moved to dm}

MR=SR1*MF (SS), MX1=DM(I2,M0);
MR=MR+AR*MY0 (SS), AY0=MX1;

AY1=AR, AR=MR1+AYO0; {AR=temp}
DM(I2,M1)=AX0, MR=SR1*MF (SS); {uli-1l]l=sav}
MR=MR+MX1*MY0 (SS);
st_loop: AX0=AR, AR=MR1+AY1; {AR=di, AXO=sav}
{?} IF NOT CE JUMP gsmlé;
st_compute: DM(IO0,M1)=AR; {Write output over input}
{?} IF NOT CE JUMP gsml5;

RTS;

{ This section of code computes the maximum cross-correlation value
of the reconstructed short term signal dp() and the current
sub-window as defined in section 4.2.11 of the recommendation}

ltp_computation:I0=I3; {Preserve I3 for now}
SB=-6; {Maximum shift value}
SI=DM(IO,M1);
CNTR=sub_window_length;
{ DO find_dmax UNTIL CE;}
find_dmax: SB=EXPADJ SI, SI=DM(IO,M1l);{Find maximum of sub-window}
{?} IF NOT CE JUMP find_dmax;

AY0=6;
AX0=SB;
AR=AX0+AYO0; {Compute shift for scaling}
DM(scal) =AR; {Save shift value}
AR=-AR;
SE=AR;
Il="wt; {Output to temporary array}
I0=1I3; {Preserve I3 for now}
SI=DM(IO,M1);
CNTR=sub_window_length; {Scale entire sub-window}
{ DO init_wt UNTIL CE;}
gsml7: SR=ASHIFT SI (HI), SI=DM(IO,M1);
init_wt: DM(I1,M1)=SR1;

{?} IF NOT CE JUMP gsml7;
(listing continues on next page)
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DIS AR_SAT;
AX1=40;
I0=39;
AY0=0;
AY1=0;
I4="dp+80;
I2="wt;
I1=12;
CNTR=81;

{ DO cross_loop UNTIL CE;}

gsml8: I15=I4;

{Can use saturation here}
{Mimimum value for Nc}
{I0 holds Nc counter}
{Holds LSW of max value}
{Holds MSW of max value}

MR=0, MX0=DM(I1,M1l), MYO=PM(I5,M5);

CNTR=sub_window_length;

{ DO cross_corr UNTIL CE;}
Cross_corr: MR=MR+MX0*MYO0

{?} IF NOT CE JUMP Cross_cCoOrr;

AR=MR0O-AY0, MYO=PM(I4,6M6);

AR=MR1-AY1+C-1;
MODIFY (I0,M1);
IF LT JUMP cross_loop;
IF EQ AR=MRO-AYO;
IF EQ JUMP cross_loop;
AY0=MRO;
AY1=MR1;
AX1=I0;
cross_loop: I1=I2;
{?} IF NOT CE JUMP gsml8;
DM (Nc) =AX1;

SI=AY1;

AY1=6;

AX0=DM(scal);
AR=AX0-AY1;

SE=AR;

SR=ASHIFT SI (HI), AR=AYO0;
SR=SR OR LSHIFT AR (LO);
SE=-3;

AY0="dp+120;
AR=AY0-AX1, AY0=SRO;
AY1=SR1;

I5=AR;

MR=0, AR=PM(I5,M5):;
CNTR=sub_window_length;

(SS), MX0=DM(I1,M1), MYO=PM(I5,M5);

{Check for L_result < L_max}

{If MSW=0, check LSW again}

{If LSW=0, the values are equal}
{Reset L_MAX to new value}

{in double precision}

{AX1 holds current value for Nc}
{Reset pointer into array}

{After loop, Nc is in AX1}
{This section of code computes}

{the power of the reconstructed}
{short term residual signal dp}

{Use dp() array directly, do}
{not bother with temp array}

{ DO power UNTIL CE;}

gsml9: SR=ASHIFT AR (HI), AR=PM(I5,M5); {Scale data}
MY0=SR1; {Copy to y-reg}

power: MR=MR+SR1*MYO0 (SS); {Compute L_power}

{?} IF NOT CE JUMP gsml9;
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AR=0;

AF=PASS AY1l;

IF LT JUMP bc_found;
IF EQ AF=PASS AYO;
IF EQ JUMP bc_found;
AR=3;

AF=MRO-AYO;
AF=MR1-AY1+C-1;

IF LT JUMP bc_found;
IF EQ AF=MRO-AYO;

IF EQ JUMP bc_found;
SE=EXP MR1 (HI);
SE=EXP MRO (LO)

SR=NORM MR1 (HI), MR1=AY1;
MRO=AYO;
MY0=SR1, SR=NORM MR1 (HI);

SR=SR OR NORM MRO (LO),

SR=SR OR NORM MRO (LO);
AY0=SR1, AF=PASS 0;
I5="table_dlb;

AR=PASS 0, MX0=PM(I5,M5) ;

GSM Codec 4

{This section of code computes}
{and codes the LTP gain value}
{L_max < 0, so bc=0}

{L_max = 0, so bc=0}

{L_max > L_power, so bc=3}

{L_max = L_power, so bc=3}
{Normalize L_power}

{Normalize L_max, MYO holds s}

{AY0 holds R}
{Check for each value of bc}

MR=MX0*MYO (SS), MX0=PM(I5,M5);

AF=MR1-AYO;
IF GE JUMP bc_found;
AR=1;

MR=MX0*MYO (SS), MX0=PM(I5,M5);

AF=MR1-AYO;

IF GE JUMP bc_found;
AR=2;

MR=MX0*MYO (SS);
AF=MR1-AYO;

IF GE JUMP bc_found;
AR=3;

DM (bc) =AR;
ENA AR_SAT;

bc_found:

{AR holds the value of bc}
{Re-enable ALU saturation}

{ This section of code computes the long term analysis filtering section
as described in section 4.2.12 of the recommendation}

1lt_analysis:AY0="table_qglb;
AR=AR+AYO0;
I5=AR;
MYO=PM(I5,M4) ;
AY0="dp+120;
AR=AY0-AX1;
I4=AR;
I5="dpp;
I2="wt+5;
MX1=H#80;

{Output array dpp()}
{The e-array goes into wt}

MR=MX1*MF (SS), MX0=PM(I4,M5);

(listing continues on next page)
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CNTR=sub_window_length;

{ DO calculate_e UNTIL CE;}
gsm20: MR=MR+MX0*MYO0 (SS), AY0=DM(I3,M1); {Compute dpplk]}
AR=AY0-MR1, MX0=PM(I4,M5); {Compute e[k]}
DM (I5,M5)=MR1; {Save dpp()}
calculate_e: DM(I2,M1)=AR, MR=MX1*MF (SS); {Save e() into wt()}

{?} IF NOT CE JUMP gsm20;
{ All the long term parameters (Nc, bc, mc) have been computed}
RTS;

{ This subroutine computes, encodes and decodes the Residual Pulse
Excitation sequence as defined in section 4.2.13 of the recommendation}

rpe_encoding:I0="wt; {The beginning of wt must be}
AX0=0; {cleared for use in the block}
CNTR=5; {filter}

{ DO zero_start UNTIL CE;}

zero_start: DM(IO0,M1)=AX0;

{?} IF NOT CE JUMP zero_start;
I0="wt+45; {The end must also be cleared}
CNTR=5;

{ DO zero_end UNTIL CE;}

zero_end: DM(IO,M1)=AX0;

{?} IF NOT CE JUMP zero_end;

DIS AR_SAT;

I2="wt; {wt will be reloaded with x()}
CNTR=sub_window_length;
{ DO compute_x_array UNTIL CE;}
gsm21: I0=I2;
I4="h;
MR=0, MX0=DM(IO,M1), MYO=PM(I4,M5);
MR0=8192; {Used for rounding}
CNTR=11; {ll-term filter}
{ DO compute_x UNTIL CE;}
compute_Xx: MR=MR+MX0*MYO0 (SS), MX0=DM(IO,M1), MYO=PM(I4,M5);
{?} IF NOT CE JUMP compute_x;
AY0=MRO; {The output value must be}
AR=MRO+AY0, AYO=MR1; {Up-shifted with saturation}
AY1=AR, AR=MR1+AY0+C;
IF NOT AV JUMP done_2X; {Check for overflow on 2x}
AR=H#7FFF; {Overflow. manually saturate}
AY1=H#8000; {output, and save value}

IF AC AR=PASS AYl;
JUMP compute_x_array;

done_2x: AX1=AR, AR=PASS AYl; {Compute 4x}
AY0=AX1, AR=AR+AY1l;
ENA AR_SAT; {Automatic saturation can}
AR=AX1+AY0+C; {be used on the last add}
DIS AR_SAT;
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compute_x_array: DM(I2,M1)=AR;
{?} IF NOT CE JUMP gsm2l;

GSM Codec 4

{Output writes over input}

{ This section of code computes the RPE Grid Selection as described
in section 4.2.14 of the recommendation}

AF=PASS 0;
AY0=0;
AY1=0;
AX0=0;
M0=3;
Il="wt;
CNTR=4;
{ DO find_mc UNTIL CE;}
gsm22: I12=11;
MR=0, SI=DM(I2,MO0);
CNTR=13;
{ DO calculate_em UNTIL CE;}
gsm23: SR=ASHIFT SI BY -2 (HI);
MYO0=SR1;
calculate_em: MR=MR+SR1*MYO0 (SS)

{?} IF NOT CE JUMP gsm23;
AR=MRO-AYO0;
AR=MR1-AY1+C-1;

IF LT JUMP find_mc;
IF EQ AR=MRO-AYO;
IF EQ JUMP find_mc;

AY0=MRO;
AY1=MR1, AR=PASS AF;
AX0=AR;

find_mc: AF=AF+1, MX0=DM(I1,M1);

{?} IF NOT CE JUMP gsm22;

ENA AR_SAT;
DM (Mc) =AX0;
AYO="wt;
Il1="wt;
AR=AX0+AYO0;
I0=AR;
AR=PASS 0;
CNTR=13;
{ DO decimate UNTIL CE;}
gsm24: AX0=DM(IO0,MO0) ;
AF=ABS AXO,
AF=AR-AF;
decimate: IF LT AR=ABS AX0;
{?} IF NOT CE JUMP gsm24;
M0=0;

DM(I1,M1)=AX0;

{Used for interleaving}

{L_result=0, fetch first value}

{Downshift to avoid overflow}
{Copy to yop}
, SI=DM(I2,M0);{L_result is in MR}

{Check for L_result<EM}

{If MSW=0, check LSW again}
{L_result = EM}
{EM=L_result}

{Mc=m}

{Mc in AXO0}

{temp array will be reloaded}
{with xM()}

{Read every third value}
{Check for maximum value}

{AR holds xmax}

{Reset MO to usual value}

-(listing continues on next page)
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{*****
if necessary. *****}
AXO = DM(vad) ;
AF = PASS AXO;
IF NE JUMP xmax_speech;
SI = AR;

{*****

in the next frame.

AX0 = "oldxmax_buffer;

AY1l = "“oldxmax_buffer + 16;
AR = DM(oldxmax_pntr) ;

AF = AY1l - AR;

IF LE AR = PASS AXO0;

SR = ASHIFT SI BY -4 (HI);
I5 = AR;

DM(I5,M5) = SR1;

DM (oldxmax_pntr) = I5;

AR = SI;

The following code checks vad and stores xmax in oldxmax_buffer,

{Yes - VAD, so do not store}
{Save xmax in SI}

This section of code will write xmax into the oldxmax_buffer for use
Note that scaling also takes place.

*****}

{AR holds address}
{SR1 holds scaled xmax}
{Write xmax to oldxmax_buffer}

{Restore xmax}

{ This section of code computes the APCM guantization of the selected
RPE section as defined in section 4.2.15 of the recommendation}

xmax_speech:CALL quantize_xmax;
DM (xmaxc) =AR;
CALL get_xmaxc_pts;

AYO="table_nrfac;
MX0=AR, AR=AR+AY(;
I5=AR;
MYO=PM(I5,M5) ;
AX0=6;
AR=AX0-AY1;
AY0=4;
I0="wt;
I2="xmc;
SE=AR;
SI=DM(IO0O,M1) ;
CNTR=13;
{ DO compute_xm UNTIL CE;}
gsm25: SR=LSHIFT SI (HI)
MR=SR1*MYO0 (SS);
SR=ASHIFT MR1 BY -12
AR=SR1+AY0; {AR=xMc[i]}
compute_xm: DM (I2,M1)=AR;
{?} IF NOT CE JUMP gsm25;

CALL rpe_decoding;
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SI=DM(IO,M1);

{input and output in AR}

{Save xmaxc}

{Compute exponent and mantissa}
{Exponent in AY1}

{Mant in AR}

N~

I3 A ER
1NOW dllalic 111

{MYO holds temp2}

{Temp array current holds xM()}

{SE holds templ}

{temp=xM[i]<<templ}
{temp=temp*temp2 }

(HI);

{Store xMc[i]}

{APCM inverse quantization}
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{ This section of code updates the reconstructed short term residual
signal dp() as defined in section 4.2.18 of the recommendation}

update_dp_code: I4="dp; {I4 points to dp[-120]}
I5="dp+40; {I5 points to dp[-801}
CNTR=80;
{ DO update_dp UNTIL CE; }
gsm26: AX0=PM(I5,M5);
update_dp: PM(I4,M5)=AX0; {dp[-120+k]=dp[-80+k]}
{?} IF NOT CE JUMP gsm26;
I4="dp+80; {I4 points to dp[-40]}
Il="ep;
I5="dpp;
AX0=DM(I1,M1);
AY0=DM(I5,M5) ; {Fetch first samples}
CNTR=sub_window_length;
{ DO fill_dp UNTIL CE;}
gsm27: AR=AX0+AY0, AX0=DM(I1,M1);
AY0=DM(I5,M5) ;
fill_dp: PM(I4,M5)=AR; {dp[-40+k]l=ep[k]+dpplk]}
{?} IF NOT CE JUMP gsm27;
RTS;

{ This section of code computes the APCM quantization of the selected
RPE section as defined in section 4.2.15 of the recommendation}

quantize_xmax:SI=AR, AF=PASS 0; {This section of code quantizes}
SR=ASHIFT AR BY -9 (HI):; {and codes xmax into xmaxc}
CNTR=6;
{ DO get_exp UNTIL CE;}
gsm28: AR=PASS SR1; {SR1 holds temp}
IF GT AF=AF+1; {Increment exp until SR1=0}
get_exp: SR=ASHIFT SR1 BY -1 (HI);

{?} IF NOT CE JUMP gsm28;

AX1=5;

AR=AX1+AF; {temp=exp+5}

AR=-AR; {Use this for downshift}
SE=AR, AR=PASS AF; {AR=exp}

SR=LSHIFT AR BY 3 (HI); {Place exponent}
AY0=8SR1, SR=ASHIFT SI (HI); {Place mantissa}
AR=SR1+AYO0; {AR holds xmaxc}

RTS;

(listing continues on next page)
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{ Encoder and Voice Activity Detector Subroutines

{ This section of code computes the reflection coefficients using the
schur recursion as defined in section 4.2.5 of recommendation 6.10 and
section 3.3.1 of recommendation 6.32}

schur_routine:I6=AY1; {This section of code prepares}
AR=DM(I6,M5) ; {for the schur recursion}
SE=EXP AR (HI), SI=DM(I6,M5); {Normalize the autocorrelation}
SE=EXP SI (LO); {sequence based on L_ACF[0]}

SR=NORM AR (HI);
SR=SR OR NORM SI (LO);
AR=PASS SR1; {If L_ACF[0] = 0, set r to 0}
IF EQ JUMP zero_reflec;
I6=AY1;
I5=MY1;
AR=DM(I6,M5) ;
CNTR=9; {Normalize all terms}
{ DO set_acf UNTIL CE;}
gsm29: SR=NORM AR (HI), AR=DM(I6,M5);
SR=SR OR NORM AR (LO), AR=DM(I6,M5);
set_acf: DM(I5,M5)=8R1;
{?} IF NOT CE JUMP gsm29;

I5=MY1; {This section of code creates}
I4="k+7; {the k-values and p-values}
I0="p;
AR=DM(I5,M5) ; {Set P[0]=acf[0]}
DM(I0,M1)=AR;
CNTR=7;
{ DO create_k UNTIL CE;} {Fill the k and p arrays}
gsm30: AR=DM (I5,M5);
DM (IO,M1)=AR;
create_k: DM (I4,M6)=AR;

{?} IF NOT CE JUMP gsm30;
AR=DM(I5,M5) ;

DM(IO,M1)=AR; {Set P[8]=acf[8]}
I15=M0; {Compute r-values}
16=7; {I6 used as downcounter}
SRO=0;
SR1=H#80; {Used in unbiased rounding}
CNTR=7 ; {Loop through first 7 r-values}
{ DO compute_reflec UNTIL CE;}
gsm31: I2="p; {Reset pointers}
T4="k+7;
AX0=DM(I2,M1); {Fetch P[0]}
AX1=DM(I2,M2); {Fetch P[1]}
MX0=AX1, AF=ABS AX1l; {AF=abs(P[1])}
AR=AF-AX0;
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IF LE JUMP do_division; {If P[O0l<abs(P[1]), v = 0}
DM (I5,M5)=SR0; {Final r =0}
JUMP compute_reflec;

do_division: CALL divide_routine; {Compute r[nl=abs(P[1])/P[0]}
AR=AY0, AF=ABS AX1l;
AY0=32767;
AF=AF-AX0; {Check for abs(P[1])=P[0]}
IF EQ AR=PASS AYO; {Saturate if they are equal}
IF POS AR=-AR; {Generate sign of r[n]}
DM(I5,M5)=AR; {Store r[n]}

MY0=AR, MR=SR1*MF (SS);
MR=MR+MX0*MY0 (SS), AY0=AXO0; {Compute new P[0]} AR=MR1+AYO;

DM(I2,M3)=AR; {Store new P[0]}
CNTR=1I6; {One less loop each iteration}
{ DO schur_recur UNTIL CE;}
gsm32: MR=SR1*MF (SS), MX0=DM(I4,M4);
MR=MR+MX0*MY0 (SS), AY0=DM(I2,M2);
AR=MR1+AY0, MX1=AYO0; {AR=new P[m]}

MR=SR1*MF (SS);
MR=MR+MX1*MY0 (SS), AY0=MXO0;
DM(I2,M3)=AR, AR=MR1+AY0; {Store P[m], AR=new K[9-m]}

schur_recur: DM(I4,M6)=AR; {Store new K[9-m]}
{?} IF NOT CE JUMP gsm32;
compute_reflec: MODIFY (I6,M6) ; {Decrement loop counter (I6)}
{?} IF NOT CE JUMP gsm31l;
I2="p; {Compute r[8] outside of loop}
AXO0=DM(I2,M1); {Using same procedure as above}
AX1=DM(I2,M2) ;
AF=ABS AX1l;

CALL divide_routine;

AR=AY(0, AF=ABS AX1l;

AY0=32767;

AF=AF-AX0;

IF EQ AR=PASS AYO;

AF=ABS AX1;

AF=AF-AX0; {The test for valid r is here}
IF GT AR=PASS 0; {r[8]1=0 if P[0]<abs(P[1l])}
IF POS AR=-AR;

DM(I5,M5)=AR;

JUMP schur_done;

zero_reflec:AX0=0; {The r-values must be set to}
I5=M0; {0 according to the recursion}
CNTR=8;

{ DO zero_rs UNTIL CE;}

Zero_rs: DM (I5,M5)=AX0;

{?} IF NOT CE JUMP zero_rs;

schur_done: MO = 0;
RTS;

(listing continues on next page)
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{ Divide Subroutine
divide_routine:
AY0=0;
DIVS AF,AXO;
CNTR=15;
{ DO div_loop UNTIL CE;}
div_loop: DIVQ AXO;
{?} IF NOT CE JUMP div_loop;
RTS;
{ Decoder Subroutine

{ This section of code implements the LPC-LTP-RPE decoder as defined in

the GSM recommendation.}

dmr_decode: ENA AR_SAT;
DM (recv_buffer)=I1;
DM (speech_out)=I2;
MX1=H#4000;
MY1=H#100;
MF=MX1*MY1l (SS);

{*¥**** The code will now implement

{Enable ALU saturation mode}

{Save pointer to input coeff array}
{Save pointer to output speech array}
{This is used to set the MF register}
{to H#80 so that it can be used in }
{unbiased rounding in various places}

the comfort noise insertion as specified

in GSM specification 6.31, section 3.1. *****}

AR = PASS AXO;
IF EQ JUMP start_dcd;

{AX0 holds the SID signal}

CALL comfort_noise_generator;

{ Now, continue}
start_dcd: I1l="LARc;

CALL recv_data;

CALL decode_LARcC;

I3=DM(speech_out) ;

CNTR=4;
{ DO dcd_subwindow UNTIL CE;}
gsm33: I1="Nc;
CNTR=17;

CALL recv_data;
CALL get_xmaxc_pts;
CALL rpe_decoding;
CALL lt_predictor;
CALL setup_wtr;
dcd_subwindow: NOP;
{?} IF NOT CE JUMP gsm33;

248

{Copy the LARc array into proper place}
{there are 8 LARCS}
{This subroutine copies from input buff}

{Decode the LARcs to LARs}
{Only set output pointer once!}
{Computations for 4 sub windows}

{Set pointer to start of sub-window}
{data array 17 coefs per sub-window}
{Copy them from the input buffer}
{Decode xmaxc into exp and mantissa}
{Decode xMc array into ep array}
{Compute drp for sub-window}

{Copy drp values in temp wtr}

{No CALL in last instr of DO loop}



gsm34: MR=MR+MX0*MYO (SS), AYO=DM(IO,MO0)
AR=MR1+AYO0;
AF=PASS AR, MX0=AR;
AR=AR+AF;
AR=AR AND AY1;
post_process: DM(IO,M1)=AR, MR=MX1*MF

I10=DM (speech_out) ;
I1=I0;
I6="st_synthesis;
I4="01d_LARrpp;
CALL st_filter;

.5

I0=DM (speech_out) ;
MY0=28180;

MX0=DM (msr) ;

AY1=H#FFF8;

MX1=H#80;

MR=MX1*MF (SS);
CNTR=window_length;

DO post_process UNTIL CE;}

{?} IF NOT CE JUMP gsm34;

{At this point,

{

DM (msr) =MXO0;

DIS AR_SAT;
RTS;

Subroutines for Decoder

recv_data: IO0=DM(recv_buffer);

{

gsm35:

recv:

DO recv UNTIL CE;}
AX0=DM(IO,M1) ;
DM(I1,M1)=AX0;

{?} IF NOT CE JUMP gsm35;

DM(recv_buffer)=I0;
RTS;

setup_wtr: I5="drp+120;

{

gsm36:
copy_drp:

CNTR=40;
DO copy_drp UNTIL CE;}
AX0=DM(I5,M5) ;
DM (I3,M1)=AX0;

{?} IF NOT CE JUMP gsm36;

RTS;

GSM Codec 4

{Set pointer to output array}
{Set pointer to input/output}
{Set pointer to st filter}

{Set pointer to old LARrpp}
{Call short term filter manager}

}

{This section of code does the}
{pre-emp, up-scale and trunc}

{Same effect as down/up shift}
{Used for unbaised rounding}
{Pre-load MR}

{De-emphasis filtering}

{Upscale output}
{Spec does this with shifts}
(SS) ;

the buffer sr can be output to the speaker}

{Return from Decoder}

{This subroutine copies data}
{from the input coefficient}
{buffer to the appropraite }
{location in memory while}

{maintaining pointer}

{This subroutine copies the}
{current sub-window data into}
{a temporary array. This temp}
{array will be used by the}
{short term synthesis filter}

(listing continues on next page)
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{ This section of code computes the short term synthesis filter as
described in section 4.3.4 of the recommendation}

st_synthesis:MX1=H#80; {Used in un-biased rounding}
M0=-3; {M0 is changed for this routine}
{ DO st_synth_compute UNTIL CE;}
gsm37: I5="rp+7; {Point to coefficient array}
I2="v+7; {Point to delay array}
MYO=DM(I5,M6) ; {Moved from PM}
MR=MX1*MF (SS), MX0=DM(I2,M2);
AYO=DM(I1,M1); {AY0 holds sri, sri=wt([k]}
CNTR=8;
{ DO st_synth_loop UNTIL CE;}
gsm38: MR=MR+MX0*MYOQO (SS);
AY1=MX0, AR=AY0-MR1; {AR=sri}
MR=MX1*MF (SS), AY0=AR; {AYO=sri}
MR=MR+AR*MY0 (SS), MX0=DM(I2,M3);
AR=MR1+AY1l, MYO=DM(I5,M6) ; {AR=v[9-1i]} st_synth_loop:
DM(I2,M0)=AR, MR=MX1*MF (SS); {Save v[9-1i]}
{?} IF NOT CE JUMP gsm38;
DM(IO,M1)=AYO0; {sr[kl=sri}
MODIFY (I2,M3); {Move pointer to delay line}
st_synth_compute: DM(I2,M0)=AY0; {V[0O]=sri}
{?} IF NOT CE JUMP gsm37;
M0=0; {Reset MO to usual value}
RTS;

{ This section of code computes the long term synthesis filter as
described in section 4.3.2 of the recommendation}

lt_predictor:AY1=DM(nrp) ; {Check the limits of Ncr}
AR=DM (Nc) ;
AY0=40;
AF=AR-AYO0;
IF LT AR=PASS AY1l; {Below min, so use last value}
AY0=120;
AF=AR-AYO0;
IF GT AR=PASS AY1l; {Above max, so use last value}
DM (nrp) =AR;
AY0="drp+120;
AR=AY0-AR;
I4=AR;
I16=AYO0;
AYO0=DM (bc) ;
AX0="table_qglb;
AR=AX0+AYO0;
I5=AR;
MX1=H#80;
MR=MX1*MF (SS), MX0=DM(I4,M5);
MYO=PM(I5,M4); {brp}
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I2="ep;
CNTR=sub_window_length;
{ DO compute_drp UNTIL CE;}
gsm39: MR=MR+MX0*MY0O (ss), AYO=DM(I2,M1);

AR=MR1+AY0, MX0=DM(I4,M5);
compute_drp: DM(I6,M5)=AR, MR=MX1*MF (SS);
{?} IF NOT CE JUMP gsm39;

{Compute drpp}
{drplk]=erpl(k]+drpp}
{Store drplkl}

I4=~drp; {I0 points to drp[-120]}
I5="drp+40; {I1 points to drp[-80]}
CNTR=120;
{ DO update_drp UNTIL CE;}
gsmd0: AX0=DM(I5,M5) ;
update_drp: DM (I4,M5)=AX0; {drp[-120+k]=drp[-80+k]}
{?} IF NOT CE JUMP gsm40;
RTS;
{ Common Subroutines for Encoder and Decoder }

{ This section of code decodes the coded log area ratios as defined by

section 4.2.8 of the recommendation}

decode_LARc:I2="LARcC;
I1="LARpPDP;
I6="table_mic;
I4="table_inva;
I5="table_b;

SE=1;

CNTR=8;
{ DO compute_larpp UNTIL CE;}
gsm4l: AXO=DM(I2,M1);

AY0=PM(I6,M5);
AR=AX0+AY0, SI=PM(I5,M5);
SR=LSHIFT AR BY 10 (HI);

AY1=8SR1l, SR=LSHIFT SI (HI); {AYl=templ}
{AR=templ=templ-temp2}
{Unbiased rounding}
{MRl=templ=INVA[i] *templ}

AR=AY1-SR1, MYO=PM(I4,M5);
MRO=H#8000;MR1=0;
MR=MR+AR*MY0 (ss);
AY0=MR1;
AR=MR1+AYO0;

compute_larpp: DM(I1,M1)=AR;

{?} IF NOT CE JUMP gsm4l;

RTS;

{AR=LARpp[i]}
{Store LARpp([il}

(listing continues on next page)
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{ This section of code computes the mantissa and exponent parts of the
xmaxc coefficient as described in section 4.2.15 of the recommendation}

get_xmaxc_pts:AR=DM(xmaxc) ;
AYO0=AR;
AX0=15;
SR=ASHIFT AR BY -3 (HI);
AY1=1;
AR=SR1-AY1l;
AF=AY0-AXO0;
IF LE AR=PASS 0;
SR=LSHIFT AR BY 3 (HI);
AY1=AR, AR=AYO0-SR1;

IF NE JUMP else_clause; {Check if mant==0}
AY1l=-4; {Yes, so set mant and ex}
AR=15;

JUMP around_else; {Jump over else_clause}

else_clause:AY0=7;

AF=AR-AYO;
CNTR=3;
{ DO normalize_mant UNTIL CE;}
gsméd2: IF GT JUMP normalize_mant;
SR=LSHIFT AR BY 1 (HI);
AR=AY1-1; {Decrement exponent}
AY1=AR, AF=PASS 1; {AYl=exp}
AR=SR1+AF; {Increment mantissa}
normalize_mant: AF=AR-AYO0;

{?} IF NOT CE JUMP gsm42;

around_else:AY0=8;
AR=AR-AYO0;
MX0=AR; {Mant must also be in MXO0}
RTS;

{ This section of code computes the reflection coefficients for the
interpolated LARs as defined in section 4.2.9.2 of the recommendation}

make_rp: MX1=I6; {store I6}
I5="LARp;
I6="rp;
CNTR=8;
{ DO compute_rp UNTIL CE; }
gsmé3: AX0=DM(I5,M5) ;
AR=ABS AXO0;
AX1=AR;
SR=LSHIFT AR BY 1 (HI);
AX0=SR1; {AXO=temp<<l1}
SR=ASHIFT AR BY -2 (HI);
AY0=26112;
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AR=SR1+AYO0;
AY0=20070;
AY1=11059;
AF=AX1-AYO0;
IF LT AR=AX1+AY1l;
AF=AX1-AY1;
IF LT AR=PASS AXO0;
IF NEG AR=-AR;
compute_rp: DM(I6,M5)=AR;
{?} IF NOT CE JUMP gsm43;
I16=MX1;
RTS;

GSM Codec 4

{AR=temp>>2 + 26112}

{AR=temp+11059}

{Compute sign}
{Store rp[i], Moved from PM}

{restore 16}

{ This section of code computes the interpolation of the LARpp() array
and calls the subroutine to compute the reflection coefficients, and
then the appropriate short term filter. This block is defined in section

4.2.9.1 of the recommendation}

st_filter: SE=-2;
I12=14;
I3="LARppP;
I5="LARp;
SI=DM(I3,M1);
CNTR=8;
{ DO k_end_12 UNTIL CE;}
gsméd: SR=ASHIFT SI (HI),

AY0=SR1, SR=ASHIFT SI

AF=SR1+AYO0;
SR=ASHIFT SI BY -1

AR=SR1+AF, SI=DM(I3,M1);

k_end_12: DM (I5,M5)=AR;
{?} IF NOT CE JUMP gsmd4;

CALL make_rp;

CNTR=13;

CALL (I6);

I5="LARp;

12=14;

I3="LARpp;

SE=-1;

SI=DM(I3,M1);

CNTR=8;
{ DO k_end_26 UNTIL CE;}
gsm4s: SR=ASHIFT SI (HI),

k_end_26: DM(I5,M5)=AR;
{?} IF NOT CE JUMP gsm45;

{Compute the LARps for }
{k_start = 0 to k_end = 12}

SI=DM(I2,M1);
(HI) ;

{Compute reflection coeffs}
{13 filter samples}
{Analysis or Synthesis}
{Compute the LARps for}
{k_start = 13 to k_end = 26}

SI=DM(I2,M1);
AY0=SR1, SR=ASHIFT SI
AR=SR1+AY0, SI=DM(I3,M1);

(listing continues on next page)
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CALL make_rp; {Compute reflection coeffs}
CNTR=14; {14 filter samples}
CALL (I6); {Analysis or Synthesis}
I5="LARp; {Compute the LARps for}
I2=14; {k_start = 27 to k_end = 39}
I3="LARpPpP;
SE=-2;
SI=DM(I2,M1);
CNTR=8;

{ DO k_end_39 UNTIL CE;}

gsmé6: SR=ASHIFT SI (HI), SI=DM(I3,M1);

AY0=SR1l, SR=ASHIFT SI (HI);
AF=SR1+AYO0;
SR=ASHIFT SI BY -1 (HI);
AR=SR1+AF, SI=DM(I2,M1);
k_end_39: DM (I5,M5)=AR;
{?} IF NOT CE JUMP gsmib6;

CALL make_rp; {Compute reflection coeffs}
CNTR=13; {13 filter samples}
CALL (I6);
I5="LARp; {Compute the LARps for}
I3="LARpp; {k_start = 40 to k_end = 159}
CNTR=8;
{ DO k_end_159 UNTIL CE;}
gsmd7: AXO0=DM(I3,M1);
DM(I5,M5)=AX0;
k_end_159: DM (I4,M5)=AX0; {LARpp (j-1)[i] = LARpp(3j) [i]}
{?} IF NOT CE JUMP gsm47;
CALL make_rp; {Compute reflection coeffs}
CNTR=120; {120 filter samples}
CALL (I6);
RTS;

{ This section of code computes the inverse of the APCM quantization
and the RPE grid positioning as defined in sections 4.2.16 and 4.2.17
of the recommendation}

rpe_decoding:I0="ep;

AX0=0; {First set output ep() array}

CNTR=sub_window_length; {to O0s, so it can be filled}
{ DO zero_fill_ep UNTIL CE;} {in the next section}
zero_fill_ep: DM (I0,M1)=AX0;

{?} IF NOT CE JUMP zero_fill_ep;
AX0=DM (mc) ;

AYO="ep;
AR=AX0+AYO0;
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I1=AR; {Point to start in ep() array}
M0O=3;
AYO="table_fac;
AX0=MXO0;
AR=AX0+AYO0;
I5=AR;
MYO=PM(I5,M4) ; {MY0 holds templ}
AX0=6;
AR=AY1-AXO0;
AX1=AR, AF=AX0-AY1;
AR=AF-1;
SE=AR, AR=PASS 1; {SE holds temp2}
SR=LSHIFT AR (HI), SE=AX1;
AY1=SR1; {AY1l holds temp3}
I0="xmc;
AY0=7;
MX1=H#80;
MR=MX1*MF (SS), SI=DM(IO,M1);
CNTR=13;
{ DO inverse_apcm UNTIL CE;}
gsm48: SR=LSHIFT SI BY 1 (HI);
AR=SR1-AY0, SI=DM(IO0,M1); {AR=temp=xMc [i]<<1l - 7}
SR=LSHIFT AR BY 12 (HI); {SRl=temp=temp<<12}
MR=MR+SR1*MYOQO (SS); {MRl=temp=templ*temp}
AR=MR1+AY1; {AR=temp=temp+temp3}
SR=ASHIFT AR (HI); {xMp[i]=temp>>temp2}
inverse_apcm: DM(I1,M0)=SR1, MR=MX1*MF (SS); {ep[Mc+ (3*i)=xMp[i]}
{?} IF NOT CE JUMP gsm48;
M0=0; {Reset MO to usual value}
RTS;
{ End of GSM0610 Cede }
. ENDMOD;

Listing 4.2 Codec Routine (GSM0610.DSP)
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{

GSM0632.DSP
Analog Devices INC. DSP Division
One Technology Way, Norwood, MA 02062
DSP Applications Hotline: (617) 461-3672

This subroutine implements the voice activity detection algorithm of
GSM specification 06.32 on the ADSP-210x family of DSPs. In line
comments reference various sections of this recommendation. It

is assumed that the reader is familiar with that document.

The code consists of two subroutines. VAD_ROUTINE is called by

the GSM encoder (06.10) after the autocorrelation is complete.
UPDATE_PERIODICITY is called by the GSM encoder after the subwindow
data is calculated.

This code is optimized to implement the Voice Activity Detection

in a minimal amount of Progam Memory space. Since the 21xx processors
can execute all of the GSM speech processing functions in much less
than 20ms, we have slightly increased execution time (less than .02ms)
in exchange for a decrease in code size.

Long words are stored as two successive 16 bit locations,
MSW first, LSW second.

This code has been successfully verified with the GSM 06.32 Digital
Test Sequences, dated March, 1990. The changes made to version 1.00
during validation are available in a separate document.

Release History:

___Date___ _Ver_ Comments
24-0ct-89 66 preliminary - waiting for test vectors

10-Jan-90 1.00 Second Release (waiting for VAD test vectors)
01-Nov-90 2.00 Third release. Validated with 06.32 test sequences

Information furnished by Analog Devices is believed to be accurate and
reliable. However, no responsibility is assumed by Analog Devices for its
use; nor for any infringement of patents or other rights of third parties
which may result from its use. Portions of the algorithms implemented in
this code may have been patented; it is up to the user to determine the
legality of their application.

Assembler Preprocessor Switches:

-cp switch must always be used when assembling

-Dalias switch aliases some variables to save RAM space
Calling Parameters:

MO=0; Ml=1; M2=-1; M3=2; M4=0; M5=1; Mé6=-1;

L0=0; ©L1=0; ©L2=0; 1L3=0; L4=0; ©L5=0; L6=0;

Return Values: VAD
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Max Loop Nesting Depth: 2 levels
Max PC Stack Nesting Depth: 3 levels

Modes Assumed: AR_SAT enabled, M_MODE disabled
ADSP-2101 Execution cycles: 2141 maximum

vad_routine: 2055 cycles maximum
update_periodicity: 86 cycles maximum

{
{

MODULE

voice_activity_detection;

Conditional Assembly

Use

(asm21 -cp -Dalias) to alias some variables to save RAM

#ifdef alias
.INCLUDE <var0632.ram>;

#endif {

.EXTERNAL wt;

{Working buffer for

#define r_a_avl wt+0
#define vpar wt+0
#define sacf wt+9
#define sav0 wt+9
#define L_coef wt+18
#define L_av0 wt+36
#define L_avl wt+54
#define L_work wt+54
#else
. INCLUDE <var0632.h>;

aliases}

.ENTRY
.ENTRY

.EXTERNAL
.EXTERNAL

.EXTERNAL
. EXTERNAL

.GLOBAL

{

the fo

.GLOBAL
.GLOBAL
.GLOBAL
.GLOBAL

vad_routine;
update_periodicity;

schur_routine; { found in GSM0610.DSP }
divide_routine; { found in GSM0610.DSP }

L_ACF;
scaleauto;

vad, lags;

llowing are GLOBAL for the reset routine only }

rvad, normrvad, L_sacf, L_sav0;

pt_sacf, pt_sav0, L_lastdm;

oldlagcount, veryoldlagcount, e_thvad, m_thvad, adaptcount;
burstcount, hangcount, oldlag;

(listing continues on next page)
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{ 3.1 Adaptive Filtering and Energy Computation

{ Test if L_ACF is equal to zero }

vad_routine:I6="L_ACF;
AR=DM (scaleauto) ;
AR=PASS AR, AY0=DM(I6,M5); {Get ms_ACF}
IF LT AR=PASS 0; {IF scaleauto<0 THEN: scalvad=0}

SR=ASHIFT AR BY 1 (LO);

AY1=SRO; {AYl=scalvad<<l}
AR=PASS 0, AX0=DM(I6,M6) ; {Get 1s_ACF}

DM (m_pvad) =AR; {Init these anyways}
DM (m_acf0) =AR;

AR=-32768;

DM (e_pvad) =AR;

DM (e_acf0)=AR;

AR=AX0 OR AY0, MRO=AYO0; {IF L_ACF[0]=0 THEN: goto 3.2}
IF EQ JUMP acf_average;

{Outputs: scalvad<<1l=AY1l, 1s_ACF[0]=AX0, I6="L_ACF[O0]}

{ Renormalization of the L_acf[0..8] }
SE=EXP MRO (HI), SI=AXO0; {Norm L_ACF[0]}
SE=EXP SI (LO);
AY0=SE; {Fix SE for >>19, take SR1l}
AX0=-3;
AR=AX0-AYO0;
SE=AR; {SE=normacf-3}
I5="sacf;
CNTR=9;

DO norm_sacf UNTIL CE;
SI=DM(I6,M5);
SR=ASHIFT SI (HI), SI=DM(I6,M5);
SR=SR OR LSHIFT SI (LO):;
norm_sacf: DM(I5,M5)=SR1;

{Outputs: scalvad<<1l=AY1l, -normacf=AY0}

{ Computation of e_acf and m_acf0 }
I5="sacf;
AX0=32;
AR=AX0+AY1; {e_acf0=32+(scalvad<<l) + (-normacf)}
AR=AR+AYO0, SI=DM(I5,M5); {get sacf[0]}
DM(e_acf0)=AR;
SR=ASHIFT SI BY 3 (LO); {m_acfO=sacf[0]<<3}

DM (m_acf0)=SRO;
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{Outputs: scalvad<<1l=AY1l, e_acf0=AR, sacf[0]=SI, I5="sacf[l]}

{ Computation of e_pvad and m_pvad }
AY0=14;
AF=AR+AY0, MX1=SI;
AX0=DM (normrvad) ; {normrvad is stored as -normvad}
I0="rvad; {AF will be e_pvad}
AF=AX0+AF, MY1=DM(IO,M1); {get rvad[0] ahead of time}

{get rvad[l], sacf[1l]}

MR=MX1*MY1l (SS), MX0=DM(IO,M1l); {sacf[0]*rvad[0]}
MYO=DM(I5,M5) ;
SR=ASHIFT MR1 BY -1 (HI); { >> 1}
SR=SR OR LSHIFT MRO BY -1 (LO);
MRO=SRO;
MR1=SR1;
CNTR=7;

DO compute_pvad UNTIL CE;
MR=MR+MX0*MY0 (SS), MX0=DM(IO,M1);
compute_pvad: MYO=DM(I5,M5);
MR=MR+MX0*MY0 (SS);
AR=PASS MR1, AYO0=MRO;

IF LT JUMP msw_le; {IF ms_temp>=0}
AR=AR OR AYO;
IF NE JUMP gt_zero; {THEN IF L_temp==0}
msw_le: MR1=0; {THEN: L_temp=1}
MRO=1;
gt_zero: SE=EXP MR1 (HI); {SE= -NORM (L_temp) }

SE=EXP MRO (LO);

SR=NORM MR1 (HI) ; {L_temp<<normprod, use SRO}
SR=SR OR NORM MRO (LO), AR=SE;

AR=AR+AF; {e_pvad-normprod}
DM(e_pvad) =AR;
DM (m_pvad) =SR1;

{Outputs: scalvad<<l=AY1l}
{ 3.2 ACF Averaging }

acf_average:AX0=-10;
AR=AX0+AY1; {Note that SE is neg for >>}
SE=AR; {so SE is -(10-scalvad<<l)}

{Outputs: scalvad<<l=AY1l}

(listing continues on next page)
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{ computation of L_av0[0..8] and L_av1[0..8] }

L6=72;

L3=54;

M2=17;

M3=-35;
I4="L_ACF;
I0="L_av0;
I1="L_sacf;
I3=DM (pt_sacf);
16=DM(pt_sav0) ;

{Circular buffers for L_sav0}
{and L_sacf, restore afterwards}
{Skip forward 9, 8.5 longs}
{Skip back 17, -17.5 longs}
{Restore Ms and Ls after use!}

{These pointers are updated using}
{automatic circular buffers}

I5="L_avl;
CNTR=9;
DIS AR_SAT;

DO acf_sum UNTIL CE;
SI=DM(I4,M5);

SR=ASHIFT SI (HI),
SR=SR OR LSHIFT SI (LO),

AY0=DM(I1,M2);

AF=SR0O+AY0, AY0=DM(I1,M1);
AR=SR1+AY1+C, AX0=DM(I1, M2);
AF=AX0+AF, AY1=DM(I1,M1);
AR=AR+AY0+C, AX0=DM(I1, M3);
AF=AX0+AF, DM(I3,M1)=SR1;

AR=AR+AY1+C, DM(I3,M1)=SRO;
AX1=AR, AR=PASS AF;
DM(IO,M1)=AX1;

DM (IO0,M1)=AR;

AX0=DM(I6,M5) ;
DM (I5,M5)=AX0;
AX0=DM(I6,M6) ;
DM(I5,M5)=AX0;

DM (I6,M5)=AX1;
acf_sum: DM(I6,M5)=AR;
ENA AR_SAT;

DM (pt_sacf)=I3;
DM (pt_sav0)=I6;

L6=0;
L3=0;
M2=-1;
M3=2;
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{L_temp=L_ACF[i]>>scal}

SI=DM(I4,M5);
AY1=DM(I1,M1);

{Get L_sacf[i]}
{Get L_sacf[i+9]}
{Get L_sacf[i+18]}

{and skip back 17.5 longs}
{L_sacf[pt_sacfl=L_temp}

{L_av0[i]=sum}

{L_avl([i]=L_sav0[pt_sav0+i]}

{L_sav0[pt_sav0+i]=sum}

{Update pointers}

{Restore DAG regs}



{ 3.

GSM Codec 4

3 Predictor Values Computation

{Outputs:

{

{Outputs:

{

v_mac:

3.3.1 Schur recursion

AY1="L_avl;
MYl="sacf;

MO="vpar; {in DM}
CALL schur_routine;

{in DM}

none}

3.3.2 Step up to obtain aavl[0.

I6="L_coef;
I4="vpar;

AR=0x2000;

DM(I6,M5)=AR;

AR=PASS 0, SI=DM(I4,M5);

DM(I6,M5)=AR;

SR=ASHIFT SI BY 14 (LO);

DM(I6,M5)=SR1, AR=PASS 1;
DM(I6,M5)=SRO;

AYO0=AR;

AY0=1, AR=m counter=1,

Loop on the LPC analysis order

DO m_loop UNTIL CE;

I0="L_coef+2;

I1=1I5;

I2="L_work;

MODIFY (I5,M6) ;

SRO=DM(I4,M5) ;

CNTR=AR;

DO v_mac UNTIL CE;
MR1=DM(IO,M1);
MRO=DM(IO,M1) ;
MYO=DM(I1,M3);
MR=MR+SRO*MY0
IF MV SAT MR;
DM(I2,M1)=MR1;
DM (I2,M1)=MRO;

(SS) ;

I6="L_coef[2],

}
{Set calling parameters}

{MO is reset to 0 in subroutine}
{Located in 06.10}

.81] }

{MSW 16384<<15}
{ms_coef[0]=16384<<15}
{Get vpar[1l]}
{ls_coef[0]=0}
{L_coef[l]l=vpar<<1l4}
{Setup AR as counter}

I4="vpar[2]}
}

{Restore Ms after use}

{7,6,5,4,3,2,1}

{Index for m-i}

{Modify for next time thru}
{Get vpar[m]}
{Loop m-1 times}

{MR=L_coef[i]}

{Get L_coef[m-i]1>>16}
{ms_coef [m-i]*vpar[m]}
{Saturate may not be needed}
{L_work=...}

(listing continues on next page)
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I2="L_work; {L_work starts at [1l] not [0]}
I0="L_coef+2;
CNTR=AR; {Loop m-1 times}

DO copy_row UNTIL CE;
AX0=DM(I2,M1);
DM (IO0,M1)=AX0;
AX0=DM(I2,M1) ;

COopy_Yow: DM (IO,M1)=AX0;
SR=ASHIFT SR0O BY 14 (LO); {L_coef [m]=vpar[m]<<14}
DM(I6,M5)=SR1;
m_loop: DM (I6,M5)=SR0, AR=AR+AY0; {Increment m counter}
M3=2; {Restore DAG}
M6=-1;

{Outputs: none}
{ Keep the aavl[0..8] for next section }

I10="L_coef;
I2="r_a_avl; {aavl, ravl and aavl are shared}
SE:—19;
CNTR=9;
DO shift_aavl UNTIL CE;
SI=DM(IO,M3);
SR=ASHIFT SI (HI);
shift_aavl: DM(I2,M1)=SR0; {aavl[il=L_coef[i]>>19}

{Outputs: none}

{ Computation of the ravl[0..8] }
I2="r_a_avl; {ravl here}
I13="L_work;
CNTR=9;
DO i_loop UNTIL CE;
I0="r_a_avl;

Il:I2,’

MR=0, MX0=DM(I2,Ml); {Modify I2 with dummy read}
SI=CNTR;

CNTR=SI; {Loop 8-i times}

DO k_loop UNTIL CE;
MX0=DM(IO,M1) ;
MYO=DM(I1,M1);

k_loop: MR=MR+MX0*MYO0 (SS); {Sum(aavl[k]*aavl[k+i])}
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DM(I3,M1)=MR1;

i_loop: DM(I3,M1)=MRO;

I3="L_work;
I0="r_a_avl;

AR=DM(I3,M1) ;

GSM Codec 4

{Save L_work[i]}

{SE=-NORM (L_work[0]) }

SE=EXP AR (HI), SI=DM(I3,M2);

SE=EXP SI (LO), AY0=SI;

AR=AR OR AYO, AX0=SE;
IF NE AR=PASS AXO0;

DM (normravl) =AR;

SE=AR;

CNTR=9;

DO norm_ravl UNTIL CE;
SI=DM(I3,M1);

{IF L_work==0 THEN: AR=SE}
{ELSE: AR=0}

{Save -normravl for 3.6}
{Keep -normravl for 3.4}

SR=NORM SI (HI), SI=DM(I3,M1);

SR=SR OR NORM SI (LO);
DM(IO,M1)=SR1;

norm_ravl:

{Outputs: -normravl=SE}

{ 3.4

{ Renormalize L_av0[0..8]
I0="L_av0;
Il="sav0;
CNTR=9;
SRO=DM(IO,M1);
AYO=DM(IO,M2) ;

AR=SRO OR AY0, AY1=SE;
IF NE JUMP else_norm;

AR=4095;
DO init_sav0 UNTIL CE;
init_sav0: DM(I1,M1)=AR;
JUMP endif_I._av0;

Spectral Comparison

{ravl[i]=L_work<<normravl}

{Save -normravl in AY1l}
{IF sav0==0}

{THEN: sav0[i]=4095}

(listing continues on next page)
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else_norm: SE=EXP SRO (HI), SI=AYO0; {SE=-shift=NORM(L_av0([0]}
SE=EXP SI (LO);
AY0=-3;
AR=SE;
AR=AYO0-AR; {AR=shift-3}
SE=AR;
DO norm_av0 UNTIL CE; {sav0[i]=(L_av0([i]<<shift-3)>>16}

SI=DM(I0,M1);

SR=ASHIFT SI (HI), SI=DM(IO,M1);

SR=SR OR LSHIFT SI (LO);
norm_avo: DM(I1,M1)=SR1;

{Outputs: -normavl=AY1l}
{ Compute partial sum of dm }

endif_IL_av0:I0="sav0+1;
Il="r_a_avl+l;
MR=0; {L_sump=0}
CNTR=8;
DO sump UNTIL CE;
MX0=DM (IO, M1);
MY0=DM(I1,M1);
sump : MR=MR+MX0*MY0 (SS);

{Outputs: -normavl=AY1l, L_sump=MR}

{ Compute division of partial sum by sav0[0] }
AF=PASS 0;
AR=ABS MR1, AY0=MR1; {Set AS flag on L_sump for later}
IF POS JUMP sump_ge; {IF L_sump<0}

DIS AR_SAT;

AR=AF-MRO; {THEN: Negate L_sump}
ENA AR_SAT;

MRO=AR, AR=AF-MR1+C-1;

MR1=AR;

sump_ge: AR=MR0O OR AYO; {IF L_temp==0}
IF NE JUMP sump_ne;
SE=0; {THEN: shift=0}
MR=0; { L_dm=0}

JUMP endif_sump;

sump_ne: SI=DM(savO0);
SR=ASHIFT SI BY 3 (LO); {AYO0=sav0[0]<<3}

SE=EXP MR1 (HI), AYO0=SRO; {SE=-shift}
SE=EXP MRO (LO);
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SR=NORM MR1 (HI);
SR=SR OR NORM MRO (LO);

AF=SR1-AY0, AX0=AYO0;
IF GT JUMP divshift_1;

divshift_0: AF=PASS SR1;

AX1=0;

JUMP endif_sav0;
divshift_1: AX1=32768;
endif_sav0: CALL divide_routine;

AF=PASS 0;

AX0=0;

DIS AR_SAT;

AR=AX1+AYO0;

SRO=AR, AR=AX0+C;

IF POS JUMP sump_pos;

SR1=AR, AR=AF-SRO;
SRO=AR, AR=AF-SR1+C-1;

{Outputs: -normavl=AY1}

GSM Codec 4

{temp=(L_temp<<shift)>>16}

{IF sav0([0]>=temp}

{THEN: will do temp/sav0[0]}
{ lsw of L_dm=0}

{ELSE: 1lsw of L_dm=32768}
{ do (temp-sav0[0])/sav0[0]}
{Do divide AY0=AF/AX0}

{L_dm+temp, do the <<1 later}

{IF L_sump<0, set by abs earlier}

{THEN: -L_dm}

{ Renormalization and final computation of IL_dm }

sump_pos: SR=LSHIFT SRO BY 15 (LO);

SR=SR OR ASHIFT AR BY 15 (HI);
AR=SR1, SR=LSHIFT SRQ (LO);

ERLO8 H

SR=SR OR ASHIFT AR (HI);
MRO=SRO;
MR1=SR1;

endif_sump: MX0=DM(r_a_avl);
MY0=0x0400;

MR=MR+MX0*MY0O (SS), SE=AY1;

IF MV SAT MR;

SR=LSHIFT MRO (LO);
SR=SR OR ASHIFT MR1 (HI);

{L_dm<<14+1, do the <<1 here}

{L_dm=L_dm>>shi

{L_dm+ (ravl[0]<<11) with sat}
{For <<11=27(11-1) and DP add}
{SE=-normavl}

{Saturate L_dm just in case}

{L_dm>>normravl}

(listing continues on next page)
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{Outputs: L_dm=SR}

{ Compute difference and save L_dm }
I0="L_lastdm+1;
AYO=DM(IO,M2);
AR=SRO-AYO0, AY1=DM(IO,MO); {L_temp=L_dm-L_lastdm}
ENA AR_SAT;
AX0=AR, AR=SR1-AY1+C-1;
DIS AR_SAT;

IF NOT AV JUMP exit_sat; {IF overflow}

AX0=0x0000; {THEN: saturate temp}

IF LT JUMP exit_sat; {IF >=0}

AXO0=0xXFFFF; {THEN: saturate -full scale}
exit_sat: DM(IO,M1)=SR1; {L_lastdm=L_dm}

DM (IO0,M0)=SRO;

IF GE JUMP temp_ge; {IF L_temp<0}
AX1=AR, AR=AF-AXO0; {THEN: -L_temp}
AX0=AR, AR=AF-AX1+C-1; {Can not overflow}

{Outputs: L_temp=AR AX0}

{ Evaluation of the stat flag

temp_ge: AY0=3277; {L_temp-3277}
AX1=AR, AR=AX0-AYO;
ENA AR_SAT;
AR=AX1-AF+C-1;
IF GE AR=PASS 0; {IF L_temp>=0,THEN: stat=0}
IF LT AR=PASS 1; { ELSE: stat=1}
DM (stat) =AR;

{Outputs: none}

{ 3.5 Periodicity detection

AX0Q0 = DM(oldlagcount) ;
AY0 = DM(veryoldlagcount) ;

AX1 = 4;

AR = 0; {AR = ptch = 0}
AF = AX0 + AYO;

AF = AF - AX1; {AF = temp - 4}
IF GE AR = PASS 1; {IF GE ptch = 1}
DM (ptch) = AR;
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{Outputs: none}
{ 3.6 Threshold adap
{ Test to find if acf0 < pth

MRO = 20;

MR1 = 25000;

AXQ0 = DM(e_acf0);

AY0 = 19;

AR = AXO - AYO;

AR = PASS AR;

IF LT JUMP set_thvad;

IF GT JUMP test_adapt;

AX0 = DM(m_acf0);

AY0 = 18750;

AF = AX0 - AYO;

IF GE JUMP test_adapt:;
set_thvad: DM(e_thvad) = MRO;

DM (m_thvad) = MR1;

JUMP vvad_decision;

{ Test to find if adaptation

AXO0

test_adapt:
AYO
MR

DM (ptch) ;
DM(stat) ;

0;

= PASS AXO;

JUMP clr_adaptcount;
PASS AYO;

JUMP inc_adaptcount;

_________________ PV
= MK

JUMP vvad_decision;

Increment adaptcount

inc_adaptcount: AYO0 DM (adaptcount

AY1l = 8;

AR = AYO + 1;

DM (adaptcount) = AR;
AF = AR - AY1;

IF LE JUMP vvad_decision;

GSM Codec 4

tion

{MRO = E_PLEV}

{MR1 = M_PLEV}

{AY0 = E_PTH}

{AY0 = M_PTH}

{comp = 1}

{jump to section 3.7}

is needed

{comp = 0}
0; {comp = 1}
{jump to section 3.7}

) {comp = 0}
{AF = adaptcount - 8}
{jump to section 3.7}

(listing continues on next page)
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{ Compute (thvad - thvad/dec) }
SE = -5;
AY1l = 16384;
SI = DM(m_thvad) ;
SR = ASHIFT SI (HI), AYO = SI;
AR = AYO - SRI1; {AR=m_thvad - (m_thvad>>5) }
AYO = DM(e_thvad);
AF = AR - AYl, SR1 = AR; {AF=m_thvad-16384, SRl=m_thvad}
SE = 1;
IF LT SR = ASHIFT SR1 (HI);
AR = AYO;
SI = SR1; {SI = m_thvad}
IF LT AR = AY0 - 1; {AR = e_thvad}

{outputs: m_thvad=SR1,SI;e_thvad=AR;}

{ Compute (pvad * fac) }
SE = -2; {shift >> 1 and format adjust}
MX0 = 3;

MYO = DM (m_pvad) ;
AY1l = DM(e_pvad);

MR = MX0 * MYO (SS), AYO = SI; {AY0 = m_thvad}

SR = LSHIFT MRO (LO), MRO = AR; {MRO = e_thvad}

AR = AY1l + 1; {AR = e_temp}

SR = SR OR ASHIFT MR1 (HI), AY1l = AR; {SR=L_temp, AYl=e_temp}
AF = PASS SRO; {L_temp can overflow 1 bit max}
IF GE JUMP test_thvad;

SR = LSHIFT SRO BY -1 (LO); {SRO = m_temp}

AR = AY1l + 1; {AR=e_temp}

{outputs:m_thvad=AY0, ST;e_thvad=MRO;m_pvad=MY0;m_temp=SR0;e_temp=AR}

{ Test to find if (thvad < pvad*fac) }
test_thvad: AY1l = MRO; {AY1l = e_thvad}

MR1 = AR; {MRl=e_temp}

AF = AYl - AR, AX0 = SRO; {AF=e_thvad-e_temp}

IF LT JUMP compute_min;
IF GT JUMP pvad_margin;

AF = AYO - SRO; {AF=m_thvad-m_temp}
IF GE JUMP pvad_margin;

{outputs:m_temp=SR0O,AX0;e_temp=AR,MR1;m_thvad=AY0, ST;e_thvad=MRO,AY1;m_pvad=MYO0}

{ Compute minimum [comp=1] }
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compute_min:SR = ASHIFT SI BY -4 (HI); {SR1l=m_thvad >> 4}

DIS AR_SAT;

AR = SR1 + AYO0; {AR = L_temp}

ENA AR_SAT;

AY0 = AR;

IF NOT AV JUMP update_m_thvad;

SR = LSHIFT AR BY -1 (HI); {SR1 = L_temp >> 1}

AR = AY1l + 1, AY0 = SRI1; {AR=ethvad+1,AY0O=mthvad}

AY1l = AR; {AY1l = e_thvad}
update_m_thvad: AF = MR1 - AY1l; {AF = e_temp - e_thvad}

IF GT JUMP pvad_margin;
IF LT JUMP update_e_m;

AF = AX0 - AYO0; {AF = m_temp - m_thvad}
IF GE JUMP pvad_margin;

update_e_m: AY1l = MR1; {comp2=1, AYl = e_thvad}
AY0 = AXO; {AY0 = m_thvad}

{outputs:e_thvad=AY1l; m_thvad=AY0; m_pvad=MY0}
{ Compute (pvad + margin) [comp=0,comp2=0] }
pvad_margin:DM(e_thvad) = AY1l;

DM (m_thvad) = AYO;
AY0 = DM(e_pvad) ;

MR1 = 19531; {MR1 = M_MARGIN}
MRO = 27; {MRO = E_MARGIN}
AR = MRO - AY0, AYl = MYO; {AR=E_MARGIN-e_pvad, AYl=m_pvad}

IF EQ JUMP epvad_eq;
IF LT JUMP epvad_greater;

swap_values: AR = -AR, AXO0 = AYl; {MR1 = m_pvad}
AY0 = MRO; {AY0 = E_MARGIN}
AY1l = MR1; {AY1l = M_MARGIN}
MR1 = AXO;
epvad_greater: SE = AR; {AR = -temp}
SR = ASHIFT MR1 (HI); {SR1 = temp}
DIS AR_SAT;
AR = SR1 + AY1l; {AR = L_temp}
ENA AR_SAT;
SR1 = AR; {SR1 = m_temp}
SE = -1;
IF AV SR = LSHIFT AR (HI); {m_pvad > 0 always}
AR = AYO;
IF AV AR = AYO + 1; {AR = e_temp}
JUMP test_for_greater;
epvad_eq: DIS AR_SAT;
AR = MR1 + AY1l; {AR = m_pvad + M_MARGIN}
ENA AR_SAT;
SR = LSHIFT AR BY -1 (HI); {SR1 = m_temp}
AR = AYO + 1; {AR = e_temp}

(listing continues on next page)
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{outputs: m_temp=SR1; e_temp=AR}
{ Test to find if (thvad > (pvad+margin)) }

test_for_greater:
AY0 = DM(e_thvad);
AY1l = DM (m_thvad) ;
AF = AY0 - AR; {AF = e_thvad-e_temp}
IF GT JUMP update_thvad;
IF LT JUMP update_rvad;

AF = AY1l - SR1; {AF = m_thvad-m_temp}
IF LE JUMP update_rvad;
update_thvad:DM(e_thvad) = AR; {comp = 1}

DM (m_thvad) = SR1;
{outputs: NONE}
{ Initialize new rvad }

update_rvad:MX0 = DM (normravl) ; {comp = 0}
DM (normrvad) = MXO0;
I0 = “~rvad;
I1 = "“r_a_avl; {ravl, shared by ravl and aavl}
CNTR = 9;
DO write_rvad UNTIL CE;
MX0 = DM(I1,M1);
write_rvad: DM(IO,M1) = MXO0;

{outputs: NONE}

{ Set adaptcount }
MX0 = 9;
DM (adaptcount) = MXO0;

{ 3.7 VAD decision

vvad_decision: AY0 = DM(e_pvad);
AY1l = DM(m_pvad) ;
AXO0 = DM(e_thvad);
AX1 = DM (m_thvad)

i

AR = AY0O - AXO;

IF EQ AR = AY1l - AX1;
AR = PASS AR;

AR = 0;

IF GT AR = PASS 1;

{outputs: vvad=AR}
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{ 3.8 VAD hangover decision

AY1 = DM (hangcount) ;
AY0 = DM (burstcount) ;

AX0 = AR, AR = PASS 0; {AX0 = vvad}

AF = PASS AXO0;

IF NE AR = AYO + 1; {AR = burstcount}
MR1 = 5;

AY0 = 3;

AF = AR - AYO;

IF GE AR = PASS AYO; {AR = burstcount}
DM (burstcount) = AR;

AF = PASS AF, AR = AY1l;

IF GE AR = PASS MR1;

AF = ABS AR, AY1l = AR;

IF POS AR = AY1l - 1;

MR1 = AR, AR = PASS AXO; {MR1 = hangcount}
IF POS AR = PASS 1; {AR = wvad}

DM (hangcount) = MR1;

DM (vad) = AR;

RTS; {Return to Main Speech transcoder}

{outputs: NONE}

{ 3.9 Periodicity updating
update_periodicity:
AR = 0; {lagcount = 0}
AY0 = DM(oldlag);
I1 = "lags;
CNTR = 4;
DO update_lagcount UNTIL CE;
AX1 = DM(I1,M1); {AXl=lags[i],AF=oldlag-lags([i],}
AF = AY0 - AX1l, AY1l = AR; {AYl=lagcount}
IF GT JUMP case_1;
case_2: AR = PASS AX1;
JUMP find_smallag;
case_1: AR = PASS AYO, AY0 = AX1; {AY0 = minlag, AR = maxlag}
find_smallag: CNTR = 3; {AR = smallag}
DO compute_smallag UNTIL CE;
AF = AR - AYO0;

(listing continues on next page)
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compute_smallag: IF GE AR = PASS AF; {AR = smallag}
AF = AY0 - AR; {AF = temp}
AF = AF - AR; {AF = temp - smallag}
IF LT AR = AY0 - AR;
AY0 = 2;
AF = AR - AYO, AR = AY1l;
IF LT AR = AY1l + 1; {AR=1lagcount}

update_lagcount :AY0 = AX1; {AYO=o0ldlag}

DM(oldlag) = AYO;

AXO = DM(oldlagcount) ;

DM(oldlagcount) = AR;

DM (veryoldlagcount) = AXO;

RTS; {Return to main speech transcoder}
. ENDMOD ;

Listing 4.3 Voice Activity Detection Routine (GSM0632.DSP)
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{

GSM_SID.DSP
Analog Devices Inc. DSP Division
One Technology Way, Norwood, MA, 02062
DSP Applications: (617) 461-3672

This code generates comfort noise as specified in GSM recommendation
6.31, section 3.1. Interpolation of the generated values over
several frames is not implemented.

This subroutine is called from the dmr_decode routine when the
frame to be decoded contains comfort noise parameters (silence
descriptor frame). The frame of coefficients is over-written

with the necessary LTP gain and lag values, and the pseudo-randomly
generated grid position and RPE pulses, for each subwindow. The
program then returns this properly formatted comfort noise frame
for normal decoding.

The pseudo-random number generator is adapted from the one found in
Analog Devices DSP Applications Handbook 1, section 4.6.

The pseudo-random number generator is also used by the substitution
and muting sections of GSM_DTX.DSP.

ADSP-2101 Execution cycles: 379 maximum

Release History:

__ Date___ _Ver_ Comments
24-Aug-89 57 Incorporated random number generator
10-Jan-90 1.00 Second Release

01-Nov-90 2.00 Third release

[

.MODULE Generate_Comfort_Noise;

.ENTRY comfort_noise_generator, make_random;
.VAR/DM/RAM seed_lsw, seed_msw;

.GLOBAL seed_lsw, seed_msw;

{**x*%*x This code generates comfort noise as specified in GSM recommendation
6.31, section 3.1. Interpolation of the generated values over several
frames is not implemented. This code can be further optimized for
the ADSP-2101. *****}

(listing continues on next page)
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comfort_nois

e_generator:

M3 = 8;
MODIFY(I1,M3);

M3 = 2;

MX0 = 40;

MX1 = 120;

MYl = 25;

AX0 = 26125;

SE = -1;

SRO = DM(seed_1lsw);
SR1 = DM(seed_msw) ;

{For random numbers in the range:

CNTR = 2;

DO cn_update UNTIL CE;

DM(I1,M1) = MXO;
AR = PASS 0;
DM(I1,M1) = AR;

AX1 = 0;
MYO = 2;
CNTR = 1;

CALL make_random;

MODIFY(I1,M1);

AX1 = 1;
MYO = 3;
CNTR = 13;

CALL make_random;

DM(I1,M1) = MX1;
AR = PASS 0;

DM(I1,M1) = AR;
AX1 = 0;
MYO = 2;
CNTR = 1;

CALL make_random;

MODIFY(I1,M1);

AX1 = 1;
MYO = 3;
CNTR = 13;

CALL make_random;

{I1 holds pointer to coeff}
{Skip LAR values}
{Reset M3}

{Constants to write to buffer}
{Upper half of a}
{Lower half of a}

0 to 3 AX1 = 0, MYO = 2
1 to 6 AX1 = 1, MYO = 3}
{LTP lag (Ncr) }

{LTP gain (bcr) }

{RPE grid position (Mcr) }
{skip block amplitude (Xmaxcr)
{RPE pulses 1 to 13 (Xmcr) }
{LTP lag (Ncr) }

{LTP gain (bcr) }

{RPE grid position (Mcr) }
{skip block amplitude (Xmaxcr)
{RPE pulses 1 to 13 (Xmcr) }

}

}
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cn_update: DM(seed_1lsw) = SRO;
DM (seed_msw) = SR1;

RTS;

make_random:DO gen_random UNTIL CE;

MR = SR1 * MYO (UU);
AY0 = MYO;
AY1l = MR1;
MR = SRO * Myl (UU), MYO0 = AXO;
MR = MR + SR1 * MYO (UU);
AR = PASS MR1l, MRl = MRO;
MR2 = AR, AR = AXl + AYl;
MRO = H#FFFE;
MR = MR + SRO * MYO (UU), DM(I1,M1)=AR;
SR = ASHIFT MR2 BY 15 (HI);
SR = SR OR LSHIFT MR1 (HI);
gen_random: SR = SR OR LSHIFT MRO (LO), MYO =
RTS;

.ENDMOD;

Listing 4.4 Comfort Noise Insertion Routine (GSM_SID.DSP)

{Scale the seed}

{Scaled seed in AY1l}
{MR x(lo) * a(hi)}
{MR MR + x(hi)*a(lo)}

{Offset the scaled seed}

{MR=MR+x (1l0) *a(lo0) }

AYO0;
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{

GSM_DTX.DSP
Analog Devices Inc. DSP Division
One Technology Way, Norwood, MA 02062
DSP Applications: (617) 461-3672

This module contains routines for decoding a codeword that precedes the
76 coefficients, classifying the frame, performing substitution and
muting if necessary, and preparing the coefficients for decoding.

The code is to be executed after the coefficient transfer is complete.
It assumes that the coefficient buffer was overwritten only with

GOOD SPEECH or VALID SID parameters. The code executes in the primary
register set, before the dmr_decode routine is called.

The 2-bit codeword classifies the frame as follows:

00 — frame contains speech

01 — unusable frame

10 — frame contains valid comfort noise parameters (silence
descriptor (SID) frame)

11 — invalid silence descriptor frame - substitute with previous

valid silence descriptor frame

ADSP-2101 Computation Time: 199 cycles maximum.
state: max. cycles
Good speech 15
Valid silence frame 39
Invalid silence frame 42
Unusable frame 199

Release History:

__Date_____ _Ver_ Comments
01-Nov-89 67 Initial implementation
10-Jan-90 1.00 Second Release
01-Nov-90 2.00 Third release

.MODULE dtx_routine;

.VAR/PM/RAM/CIRC sil_fram_subwin[17]; { silence frame coeffs (06.11)}

. VAR/PM/RAM sil_fram_lar([8]; { silence frame coeffs (06.11)}
.VAR/DM/RAM valid_sid_buffer([9]; { valid coeffs from prior SID}
.VAR/DM/RAM sub_n_mute; { flag}

.VAR/DM/RAM sid_inbuf; { flag}

.VAR/DM/RAM taf_count; { counts frames between valid SID

coeffs during Comfort Noise
Insert}
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.EXTERNAL
. EXTERNAL

.GLOBAL
.GLOBAL
.GLOBAL
.GLOBAL

.ENTRY

make_random;
seed_lsw,

sid_inbuf;

valid_sid_buffer;

sub_n_mute;
taf_count;

decode_codeword;

GSM Codec 4

seed_msw;

{these are constants located in program memory ROM}

JINIT sil_fram_subwin H#2800, 0, H#100, 0O, H#300, H#400, H#300,
H#400, H#400, H#300, H#300, H#300, H#300,
H#400, H#400, H#300, H#300;
{40, 0, 1, 0, 3, 4, 3, 4,
4, 3, 3, 3, 3, 4, 4, 3, 3;}
JINIT sil_fram_lar H#2A00, H#2700, H#1500, H#A00, H#900,
H#400, H#300, H#200;
{42, 39, 21, 10, 9, 4, 3, 2;}
decode_codeword:I0 = “valid_sid_buffer;
AY0 = 2;
MX1 = 1;
MX0 = -24;
MYO = 0;
AF = PASS 1, AX0 = DM(I1,M1); {AX0 = codeword}
I4 = I1; {I4 is working pointer, save Il}
AR = AX0 AND AF;
IF NE JUMP not_good_frame;
good_frame: DM(sub_n_mute) = MYO0
DM(taf_count) = MXO0;
AR = AX0 AND AYO;
IF NE AR = PASS 1;
valid_sid: DM(sid_inbuf) = AR;
IF EQ RTS; {If good speech, return}
CNTR = 8;
M7 = 3;
DO fill_valid_sid UNTIL CE;
AR = DM(I4,M5);
fill _valid_sid: DM(IO,M1) = AR; { save LAR values}
MODIFY (I4,M7);
M7 = 0;
AR = DM(I4,M4);
DM(IO,M0) = AR; { save xmax value}
RTS;

(listing continues on next page)
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not_good_frame:
IF NE

unusable_frame:
AX1 =
AF =
IF NE

AF =
IF EQ

AY0 =
AF =
IF LE

set_subnmut : DM (
RTS;

inc_taf: AR =
DM (taf
RTS;

check_xmax: AF
M7 =

MODIFY

M7 =
AYO
CNTR =
DO dec

AXO

H oo
T ™

dec_xmax:

AR =
IF NE

writ_sil_frame:
I0 =
I4 =
CNTR =
DO wri
AR
writ_sil_lar:
I4 =
CNTR =
L4 =

AR = AX0 AND AYO;
JUMP invalid_sid;

{ At this point, either UNUSABLE or}
{ INVALID SID frame}

AX0O = DM(sub_n_mute) ;

DM (sid_inbuf) ;
PASS AXO0;
JUMP check_xmax;

PASS AX1;
JUMP set_subnmut;

DM(taf_count) ;
PASS AYO0;
JUMP inc_taf;

sub_n_mute) = MX1;

AYO0 + 1;
_count) = AR;

= PASS 0;
11;

(I4,M7);
17;
4;

4;
_xmax UNTIL CE;
= DM(I4,M4);
= AX0 - AYO;

" GE AF = PASS 1;

LT AR = PASS 0;
DM(I4,M7) = AR;

PASS AF;
JUMP not_sil_frame;

DM (sid_inbuf) = AR;
I1;
~sil_fram_lar;
8;
t_sil_lar UNTIL CE;
= PM(I4,M5);
DM(IO0O,M1) = AR;
~sil_fram_ subwin;
68;
17;

{JUMP if NOT first consecutive UNUSABLE}

{JUMP if not generating comfort noise}

{JUMP if waiting for VALID SID frame}

{ substitution and muting begins}

{ set pointer to xmax[1]}

{ decrement xmax by 4}

{ set minimum}
{ write xmax}

{ if all four xmax < 4, insert silence}

DO writ_sil_subwin UNTIL CE;

AR
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writ_sil_subwin: DM(IO,M1) = AR;
L4 = 0;
RTS;
not_sil_frame: AR = PASS AXl; { AX1 = sid_inbuf}
IF NE RTS; { if generating comfort noise, grid
position determined elsewhere}
I4 = I1;
M1 = 10; { set-up}
MODIFY (I1,M1);
AX1 = 0;
MYO = 2;
M1 = 17;
SRO = DM (seed_1lsw) ;
SR1 = DM(seed_msw) ;
SE = -1;
MYl = 25;
AX0 = 26125;
CNTR = 4;
CALL make_random;
M1 = 1;
I1 = I4;
RTS;
invalid_sid:DM(sub_n_mute) = MYO; { frame contains INVALID SID parameters}
DM(taf_count) = MXO0;
DM(sid_inbuf) = MX1;
CNTR = 8;
M7 = 3;
DO writ_valid_sid UNTIL CE; { replace 8 LARs with previous}
AR = DM(IO,M1); { valid values}
writ_valid_sid: DM(I4,M5) = AR;
MODIFY (I4,M7);
M7 = 17;
AR = DM(IO,MO);
DM(I4,M7) = AR; { replace xmax with previous}
DM(I4,M7) = AR; { valid values}
DM(I4,M7) = AR;
DM (I4,M4) AR;
M7 = 2;
RTS;

. ENDMOD;

Listing 4.5 Discontinuous Transmission Routine (GSM_DTX.DSP)
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{

DMR21xx.DSP

Analog Devices Inc. DSP Division
One Technology Way, Norwood, MA 02062
DSP Applications: (617) 461-3672

This module is a data acquisition shell for the digital mobile radio
(GSM) speech processing functions, running on the ADSP-2101 or ADSP-2111
EZ_LAB. Sound from the microphone input is processed and echoed back to
the speaker output.

The interrupt IRQ2 controls the state of the demonstration. There are
five states, as follows:

State 0 — input is output directly in a talk-thru mode
- no encoding, decoding, etc. take place
- the voice activity flag is disabled

State 1 — speech is encoded and decoded in a talk-thru mode

- This mode demonstrates the need for comfort noise
insertion. The intelligibility of speech in a noisy
background is reduced.

- frames are encoded as speech or as comfort noise,
dependent on the speech flag

- frames are decoded as speech if the speech flag is
active, otherwise output is muted

- the voice activity flag is determined for each frame

State 2 — speech is encoded and decoded in a talk-thru mode
- This mode is the normal operation of the GSM system.
- frames are encoded and decoded as speech or as comfort
noise, dependent on the speech flag
- the voice activity flag is determined for each frame

State 3 — input is encoded and decoded in an example mode
- each frame is encoded and decoded as a comfort noise
(silence descriptor) frame
- the voice activity flag is forced inactive

State 4 — continuously decodes the last valid silence descriptor frame
(comfort noise insertion)
- the voice activity flag is forced inactive

These five states are cycled through, entering the next state after an
IRQ2 interrupt. State 0 is the initial state after reset.

In contrasting states 1 and 2, it is helpful to have a random noise

source available to mix with the microphone input. This will show the
adaptation of the voice activity detection threshold, and the loss of
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intelligibility in state 1 compared to state 2 in a noisy environment.
The muting in state 1 occurs immediately, unlike the gradual muting
specified by GSM (which can take up to 320 ms). The code for immediate
muting is added with the -Ddemo switch.

The FLAG_OUT signal of the ADSP-2101 or ADSP-2111 EZ_LAB board is
configured to output the state of the Voice Activity Detector flag in
states 1 and 2. A high output (LED on) signals that voice activity
has been detected. This will not work when FLAG_OUT is used to
control an AD28msp02.

This implementation allows serial port 0 to accept either 8-bit u-law
or 16-bit linear data input, based on a C preprocessor switch. The
u-law hardware companding is used with the codec provided on the
EZ_LAB board. A 16-bit linear format is used with an AD28msp02
daughterboard plugged into the codec socket. The default format is
8-bit u-law.

This routine takes full advantage of the integration on the ADSP-2101
and ADSP-2111. It makes use of the IDLE function while waiting for
the next frame of data. The transfer of the transmit/receive speech
buffer takes place over serial port 0, using index register I7. If
using the u-law codec, this is an autobuffered transfer. In order

for the receive and transmit autobuffering to function synchronously,
THIS IMPLEMENTATION REQUIRES RFS0O and TFSO TO BE WIRED TOGETHER
EXTERNALLY WHEN USING THE u-LAW CODEC. If an AD28msp02 is being used,
autobuffering is NOT used. THIS IMPLEMENTATION REQUIRES RFSO and

TFSO TO BE SEPARATE WHEN USING THE AD28msp02.

The Data Address Generator 2 registers I7, L7, M4, and M5 should NEVER,
NEVER be altered in any routine. They are reserved for input and
output data buffering, controlled by this shell program.

Release History:

Date _Ver_ Comments
20-Jun-89 56 Initial release.
04-Jan-90 84 add routine for testing VAD - waiting for vectors

10-Jan-90 1.00 Second release
01-Nov-90 2.00 Third release - added 2111 and 28msp02 capability

Assembler Preprocessor Switches

-cp switch must always be used when assembling

-Ddemo switch enables functions necessary for the five-state
demonstration

-Dtestvad includes code to format coefficients for VAD and
SP_FLAG testing

-Dadsp2111 must be used if running code on the ADSP-2111

microcomputer (default is ADSP-2101)

(listing continues on next page)
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-Dmsp02 changes incoming data format to 16 bit linear for
AD28msp02, disables autobuffering (default
is u-law codec, autobuffering enabled)

.MODULE/ABS=0 LPC_Codec_Shell;
.VAR/DM/RAM/CIRC coeff_codeword, coeff_buffer[76];
{Buffer for coeffs, codeword}
.VAR/DM/RAM/CIRC speech_1[160];
.VAR/DM/RAM/CIRC speech_2[1601]; {Speech windows}

{ Conditional Assembly.

{ use (asm2l -cp -Ddemo) for demonstration }

#ifdef demo
.VAR/PM/RAM demo_codes[5]; {codes for demonstration only}
JINIT demo_codes: H#C00000, H#100000, H#200000),
H#020100, H#030100;
#endif
{
.ENTRY start_dmr;

.EXTERNAL dmr_encode, dmr_decode;
.EXTERNAL reset_codec, decode_codeword;

.EXTERNAL vad;
.EXTERNAL sid_inbuf;

.EXTERNAL sp_flag;

.EXTERNAL taf_count; {temporary - for demonstration}
.GLOBAL speech_1;

.GLOBAL speech_2;

.GLOBAL coeff_codeword;

reset_vector: JUMP start_dmr; NOP; NOP; NOP;
{ Conditional Assembly

{ use (asm2l -cp -Ddemo) for demonstration }
#ifdef demo

irqg2: JUMP next_demo; NOP; NOP; NOP;

#else

irg2: RTI; NOP; NOP; NOP;

#endif

{
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(e e e e e Conditional AsSsembly. ...ttt ittt eeeeneeeennen }
{ use (asm2l -cp -Dadsp211l1l) for use with ADSP-2111 }
#ifdef adsp2111

hipw: NOP; NOP; NOP; NOP;

hipr: NOP; NOP; NOP; NOP;

=0 5T B
transO: RTI; NOP; NOP; NOP;

(e e Conditional AsSSembDly ... uvi i tn e ettt eeeennn. }

{ use (asm2l -cp -Dmsp02) for use with AD28msp02 }
#ifdef msp02

recvQ: JUMP sample; NOP; NOP; NOP;

#else

recv0: RTI; NOP; NOP; NOP;

=Y o L B T (S
transl: NOP; NOP; NOP; NOP;

revcl: NOP; NOP; NOP; NOP;

timer_int: NOP; NOP; NOP; NOP;

start_dmr: ICNTL=B#10100;
L0=0; L1=0; L2=0; L3=0;
L4=0; L5=0; L6=0; L7=160;
MO=0; M1l=1; M2=-1; M3=2;
M4=0; M5=1; M6=-1; M7=0;

CALL reset_codec;

reg_setup: AX0 = 0;
DM (0X3FFE) = AXO; { DM wait states }

LY Conditional ASSemMbDly ... ittt teeeneeeneneeeeeenennn. }
{ use (asm2l -cp -Dmsp02) for use with AD28msp02 }
#ifdef msp02

{ initialize 28msp02 - assumes 21xx rfs0, tfs0 separate }
RESET FLAG_OUT; { connected to data/~cntl }
AX0 = 0x2A0F; { ext sclk, ext rfs, int tfs}
DM (0x3FF6) = AXO; { control reg0 }
AX0 = 0x1000; { enable serial port0, keep flagout }
DM (0x3FFF) = AXO; { system control reg }

IMASK = 0x10;

AX0 = 0x20; { *x*x¥x% PWDD is inverted in early 28msp02 }
TX0 = AXO; { write control word to 28msp02 }

IDLE;

AX0 = 0x7C20;

TX0 = AXO; { write non-control word to 28msp02 }

IDLE;

(listing continues on next page)
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IMASK = 0;
SET FLAG_OUT; { connected to data/~cntl }
AX0 = 0x0000; { disable serial port0 }
DM (0x3FFF) = AXO; { system control reg }
#else
AXO = 2;
DM(0X3FF5) = AXO0; { sclkdivO }
AX0Q = 255;
DM(0X3FF4) = AXO0; { rfsdiv0 }
AX0 = 0x6927; { int sclk, int rfs, ext tfs }
DM (0X3FF6) = AXO; { control reg0 }
AX0 = OXO0E77;
DM (0x3FF3) = AXO; { autobuffer reg0O }
#endif
et e e e e e e et e e e e e et e e e e e et e e e e et e e e et e e e
I7="speech_1; { I7 is speech buffer pointer }
AX0O = 0X1000;
DM (0x3FFF) = AXO; { system control reg }
{ Conditional Assembly

{ use (asm21 -cp -Ddemo) for demonstration - sets values for state 0}
#ifdef demo

ENA SEC_REG;

MR1 = 3; MRO = 0; MYl = 0; MY0 = 0; MX1 = 0; SI = 0;

DIS SEC_REG;
#endif

(e e e e e e e e Conditional AsSSembDly . i it ittt ittt e eneeeeeeeeennennn
{ use (asm2l -cp -Dadsp2111l) for use with ADSP-2111 }
#ifdef adsp21l1l

IMASK=0x88;
#else

IMASK=0x28;
#endif
Y
(e e e e e e e e Conditional ASSemMbDly . ...iiiiee e eeeeneeenneeennns

{ use (asm21l -cp -Dmsp02) for use with AD28msp02 }
#ifdef msp02
ENA SEC_REG;
MX0 = 0; { reset sample counter }
AX1 160; { length of sample buffers speech_1,2 }
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code_1_loop:IDLE; { wait for next sample }
AY1l = MXO0;
AR = AX1 - AY1; { check if buffer is full }
IF NE JUMP code_1_1loop;
MXO = 0; { buffer full, reset sample counter }
DIS SEC_REG;
#else
code_1_loop:IDLE; { autobuffering counts samples }
2530 o T S (P
I7="speech_2; { swap speech output/input buffer }
{ Conditional Assembly }

{ use (asm2l -cp -Ddemo) for demonstration }
#ifdef demo

ENA SEC_REG;

AF = PASS MR1;

IF NE JUMP CODE_2_LOOP;

M7 = MX1;

DIS SEC_REG;
#endif {

S Conditional ASSemMbDly ..o ve i ioeeeee et eeeee e }
{ use (asm2l -cp -Dmsp02) for use with AD28msp02 }
#ifndef msp02

SE = 2; { left-justify expanded u-law input }
I0 = “speech_1;
CALL scale_routine;

7Y o M B (R

I0="speech_1;
Il="coeff_buffer;
CALL dmr_encode;

{ Conditional Assembly }
{ use (asm2l1l -cp -Ddemo) for demonstration }

#ifdef demo

#ifndef msp02

CALL vad_out;
#endif
#endif

(listing continues on next page)
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{
AR = 2; {temporary}
AX0 = DM(sp_flag):;
AF = PASS AXO0; {temporary}
IF NE AR = PASS 0; {temporary}
DM (coeff_codeword) =

{ Conditional Assembly

{ use (asm2l -cp -Dtestvad) to validate VAD and SP_FLAG }

#ifdef testvad
CALL test_format;

#endif

{
{This is where the coefficient transfer will take place!!}
Il="coeff_codeword;
I2="gpeech_1;

{ Conditional Assembly

{ use (asm21 -cp -Ddemo) for demonstration }

#ifdef demo
CALL set_codeword;

{routine sets coeff_codeword for demo}

#endif
{
CALL decode_codeword;
AX0 = DM(sid_inbuf);
{ Conditional Assembly

{ use (asm2l1 -cp -Dtestvad) to validate VAD and SP_FLAG }

#ifdef testvad
CALL test_unformat;
#endif

CALL dmr_decode;

L Conditional Assembly

{ use (asm21l -cp -Dmsp02) for use with AD28msp02 }

#ifndef msp02

SE = -2;

I0 = “speech_1;

CALL scale_routine;
#endif
et e e e e e e e e e e e
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e e e e e e Conditional AsSSembly. ... .ttt et et e e }
{ use (asm2l -cp -Dmsp02) for use with AD28msp02 }
#ifdef msp02

ENA SEC_REG;

code_2_loop:IDLE; { wait for next sample }
AY1l = MXO0;
AR = AX1 - AY1; { check if buffer is full }

IF NE JUMP code_2_loop;

MX0 = 0; { buffer full, reset sample counter }
DIS SEC_REG;
#else
code_2_loop:IDLE; { autobuffering counts samples }
Fendd E (. e,
I7="speech_1; { swap speech output/input buffer }
{ Conditional Assembly }

{ use (asm2l -cp -Ddemo) for demonstration }
#ifdef demo
ENA SEC_REG;

AF = PASS MR1;
IF NE JUMP CODE_1_LOOP;
M7 = MX1;

DIS SEC_REG;

#endif {
do_dmr_2:
(e e e Conditional AsSsSembly .. .. v ittt ettt et }
{ use {(asm2l -cp -Dmsp02) for use with AD28mspl2 }
#ifndef msp02
SE = 2; { left-justify expanded u-law input }
I0 = "“speech_2;

CALL scale_routine;

=Y oL e
I0="speech_2;
Il="coeff_buffer;
CALL dmr_encode;

{ Conditional Assembly 1

{ use (asm2l -cp -Ddemo) for demonstration }
#ifdef demo
#ifndef msp02

CALL vad_out;

(listing continues on next page)
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#endif
#endif
{ }
AR = 2; {temporary}
AX0 = DM(sp_flag);
AF = PASS AXO; {temporary}
IF NE AR = PASS 0; {temporary}
DM (coeff_codeword) = AR;
{ Conditional Assembly. }

{ use (asm21 -cp -Dtestvad) to validate VAD and SP_FLAG }
#ifdef testvad
CALL test_format;

#endif

{ }
{This is where the coefficient transfer will take place!!}
Il="coeff_codeword;
I2="speech_2;

{ Conditional Assembly }

{ use (asm2l1l -cp -Ddemo) for demonstration }
#ifdef demo

CALL set_codeword; {routine sets coeff_codeword for demo
#endif
{ }
CALL decode_codeword;
AX0 = DM(sid_inbuf) ;
{ Conditional Assembly }

{ use (asm21l -cp -Dtestvad) to validate VAD and SP_FLAG }
#ifdef testvad
CALL test_unformat;
#endif
{ }

CALL dmr_decode;

L Conditional Assembly . ...ttt ittt ninnnnenennn }
{ use (asm21 -cp -Dmsp02) for use with AD28msp02 }
#ifndef msp02
SE = -2; { right shift to 14 bits for u-law }
I0 = ”"speech_2; { compression }
CALL scale_routine;
#endif
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........................ Conditional Assembly
{ use (asm2l -cp -Dmsp02)
#ifdef msp02

ENA SEC_REG;

for use with AD28msp02 }

{ sample counting done in sec regs }

Hendif (... e e
JUMP code_1_1loop;
{ Conditional Assembly.
{ use (asm2l -cp -Ddemo) for demonstration }
#ifdef demo
next_demo: ENA SEC_REG;
SE = 2;
AY0 = “demo_codes;
AR = SI, AF = PASS 1;
AY1l = 4;
AR = AR + AF;
af = ar - ayl;
if gt ar = pass 0;
SI = AR, AR = AR + AYO0;
AX0 = I5;
IS5 = AR;
SRO = PM(I5,M4);
I5 = AXO;
ayl = 7;
AR = SRO AND AY1l;
MX1 = AR, SR = LSHIFT SRO (LO);
MR1 = SR1, SR = LSHIFT SRO (LO);
MRO = SR1, SR = LSHIFT SRO (LO);
MYl = SR1, SR = LSHIFT SRO (LO);
MYO = SR1;
RTI;
set_codeword: ENA SEC_REG;
IMASK = 0;
AY1l = 3;
AF = PASS 0;
AY0 = DM(sp_flag):;
AR = PASS AYO0;
IF EQ AF = PASS AY1l;
AR = MRO AND AF;
AY1l = 2;
AF = PASS 1, AX0 = AR;
AY0 = DM(taf_count);
AR = PASS AYO0;
IF GT AF = PASS AY1l;
AR = MY1l;

{increment current state}
{offset pointer, save state}

{get demo state codeword}

{extract force_vad_high,
talk_thru_flag}
mask_sp}

_low}

{
{
{
{

{AR masked sp_flag}

(listing continues on next page)
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AF = AR AND AF; {AF = masked taf_count}
AF = AX0 OR AF, AR = MYO;
AR = AR OR AF; {AR = coeff_codeword}
DM (coeff_codeword) = AR;
AYO0 = 1;
AR = AR - AY0; { check if unusable frame }
IF NE JUMP set_cw_done;
I4 = I1; { unusable frame - force }
M7 = 12; { immediate muting for }
MODIFY (I4,M7); { demonstration by setting }
M7 = 17; { the four xmax values < 4 }
CNTR = 4; { (in this case, = 0) }
DO set_xmax_demo UNTIL CE;

set_xmax_demo: DM(I4,M7) = AR;

M7 = 2;
(e ettt i et e ettt eiaaaen Conditional ASSemMbly .. ..veineeeeeeeeeeeeneennennnnns

{ use (asm2l1 -cp -Dadsp2l11l) for use with ADSP-2111 }
#ifdef adsp211l1l

set_cw_done: IMASK=0x88;
#else

set_cw_done: IMASK=0x28;

7= o o B T A }
DIS SEC_REG;
RTS;

#endif

{

{ Conditional Assembly

{ use (asm21l -cp -Dtestvad) to validate VAD and SP_FLAG }
#ifdef testvad

test_format:I1l ~coeff_buffer;

o

AXO DM (vad) ;
AX1 = DM(sp_flag);
CNTR = 2;

DO add_bits UNTIL CE;
AR = H#8000;
AF PASS AX0, AY0O = DM(I1,M0); IF EQ AR = PASS 0;
AR AR OR AYO0, AX0 = AX1;
add_bits: DM(I1,M1) = AR;

RTS;
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test_unformat: AX1 = H#7FFF;
AYO = DM(I1,MO);
AR = AX1 AND AYO;
DM(I1,M1) = AR;

AY0 = DM(I1,MO0);
AR = AX1 AND AYO;

DM(I1,M2) = AR;

RTS;
#endif
{ }
{ Conditional Assembly. }

{ use (asm2l1 -cp -Ddemo) for demonstration }
#ifdef demo
#ifndef msp02

{this is temporary for outputting the voice activity flag for the demonstration}

vad_out: AXO0
AF

DM (vad) ;
PASS AXO;

non

IF NE SET FLAG_OUT;

IF EQ RESET FLAG_OUT;

RTS;
#endif
#endif
{ }
i i ieeanns Conditional ASSemMbDlY ...ttt etineenneeneenenenneeens }

{ use (asm2l -cp -Dmsp02) for use with AD28msp02 }
#ifndef msp02
scale_routine: SI = DM(IO,M1);

CNTR = 160;

DO shift_it UNTIL CE;

SR = ASHIFT SI (HI), SI = DM(IO,M2);

shift_it: DM(IO,M3) = SR1;

RTS;

(listing continues on next page)
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#endif
S }
(e e e e e e e e e e e i Conditional Assembly......iiiiiiinnn . }

{ use (asm2l -cp -Dmsp02) for use with AD28msp02 }
#ifdef msp02
sample: ENA SEC_REG;

AR = DM(I7,M4); { read buffer, do not move pointer }
TX0 = AR; { write transmit data }
AR = RXO0; { read received data }
DM(I7,M5) = AR; { write to buffer, increment pointer }
AY0 = MXO0;
AR = AYO + 1; { increment sample counter }
MX0 = AR;
RTI;
B o o T A (P }

. ENDMOD;

Listing 4.6 Data Acquisition Shell Routine (DMR21xx.DSP)
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5.1 OVERVIEW

Pulse Code Modulation, or PCM (CCITT Recommendation G.711), is a
method of digitizing analog wave forms to transmit speech signals. This
quantization scheme provides 13 bits (u-law) or 14 bits (A-law) of dynamic
range in an 8-bit value. 13 or 14-bit dynamic range is the minimum
requirement to accurately reproduce the full range of speech signals,
therefore, u-law and A-law encoding are widely used in telephony.

This A/D conversion can introduce quantization noise when the analog
signals are quantized to digital values. The human ear is more sensitive to
quantization noise when the noise component is relatively large compared
to the size of the signal. Recommendation G.711 applies a non-uniform
quantization function to adjust the data size in proportion to the input
signal, thus reducing noise interference. As a result, smaller signals are
approximated with greater accuracy.

Adaptive Differential Pulse Code Modulation, or ADPCM (CCITT
Recommendation G.721), is more efficient to transmit than PCM. ADPCM
uses an adaptive predictor to take advantage of the redundancies present
in speech signals. It compares a signal sample with the previous sample
and transmits the difference between the two. This reduces the number of
bits needed to reproduce the speech. G.721 samples speech bandwidths of
200-3400 Hz at 8 kSa/s. The inputs and outputs of a G.721-based system
are still PCM values. Although G.711 and G.721 are widely used, these
methods are quality and bandwidth limited. Chapters 11 and 12 of Digital
Signal Processing Applications Using the ADSP-2100 Family, Volume 1, briefly
discuss PCM and ADPCM theory, and include program examples.

To improve the overall transmission quality and add a sub-carrier
frequency, CCITT developed Sub-Band ADPCM (Recommendation
G.722). Recommendation G.722 is a wideband audio recommendation (50
to 7000 Hz) that splits the frequency band into two sub-bands (0 to 4000
Hz and 4000 Hz to 8000 Hz), and applies ADPCM to the sub-bands
independently. G.722 operates on linear samples of speech. The auxiliary
data (non-encoded) channel is available for video transmission, and is
used in applications such as teleconferencing.
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This chapter describes a method to implement the G.722 algorithm with
the ADSP-2100 Family of digital signal processors. To save memory space
and to clarify the implementation, the program example (Listing 5.1) at the
end of this chapter is written as a collection of subroutines. This format is
efficient because the higher and lower sub-bands share most of the
subroutines; in fact, many subroutines (such as filtez and filtep) are
also shared by the encoder and the decoder of each sub-band.

5.2 SUB-BAND ADPCM ALGORITHM

CCITT Recommendation G.722 specifies the following six parts of the
algorithm (see Figure 5.1):

Transmit quadrature mirror filter (QMF)
Lower sub-band encoder

Higher sub-band encoder

Lower sub-band decoder

Higher sub-band decoder

Receive quadrature mirror filter

The block diagram has two halves, transmit (encoder) and receive
(decoder).The implementation of the multiplexer and demultiplexer are
straightforward, and are not described in this chapter.

The subroutines included at the end of this chapter were verified against
digital test sequences provided by CCITT for the standards, and are fully
compatible with Recommendation G.722. When possible, the names of the
subroutines and variables used in the algorithm match the names
specified in the recommendation.

5.3 TRANSMIT PATH

This section describes the encoder and transmit path shown in Figure 5.1.
The encoder operates at 64 kbits per second, with 16 kSa/s and 14 bits.

5.3.1  Transmit Quadrature Mirror Filter

The transmit quadrature mirror filter splits the frequency band into two
sub-bands, higher and lower. It also decimates the input to the encoder
from 16 kHz to 8 kHz. The filter is a 24 tap Finite Impulse Response filter,
or FIR. The impulse response can be approximated as a simple delay
function. The transmit quadrature mirror filter shares the same coefficients
and 24 tap delay line with the receive QMF. Implementation of QMFs in
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Transmit
16 kbitis Higher Sub-Band
. < ADPCM Encoder - i
64 Kbit's | Transmit
MUX H *H | Quadrature |e—
<——I ] Mirror X ;
_48kbit's ™ Lower Sub-Band Filters n
- ADPCM Encoder h
I XL
Receive
|
H Higher Sub-Band 'H
. 6 Koite ADPCM Decoder " | Receive Xout
DMUX Quadrature |
64 kbit's I it Ftere
Lower Sub-Band Filters
> ADPCM Decoder o
48 kbit's (3 variants)

[}

Mode Indication
Figure 5.1 Sub-Band ADPCM Algorithm Block Diagram

ADSP-2100 family assembly language is computationally efficient because
the data adress generators, or DAGs, use indirect addressing to fetch filter
coefficients and data values in the same processor cycle. Also, you can use
circular buffering to represent the tapped delay lines. The output variables
of the filters, x1 (n) and xh (n) (lower and higher sub-band signal
components), are determined by the following equations:

xl(n) = xa + xb

xh(n) = xa - xb
where

xXa h2i * xin(j-21i)

([

xb h2i+1 * xin(j - 2i - 1)
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5.3.2  Higher Sub-Band Encoder

Figure 5.2 is a functional block diagram of the higher sub-band encoder.
The higher sub-band encoder operates on the differences between input
signal value xh and the adaptive predictor signal estimate. After the
predicted value is determined and the subtraction for the difference signal
is performed, the estimate signal (el) is applied to a four level non-linear
adaptive quantizer that assigns six binary digits to yield the 48 kbits/s
signal, I1. Since data is not truncated from the output signal, Th, in the
feedback loop, the inverse adaptive quantizer is also 4 levels.

X +. n H Adaptive —>
H R SP Quantizer
\
AH
Quantizer
Adaptation -
)
4 Level
- Inverse
Adaptive
d H Quantizer
s
H
Adaptive h
- Predictor "H J

- + +
+

Figure 5.2 Higher Sub-Band Encoder Block Diagram

5.3.3  Lower Sub-Band Encoder

The lower sub-band encoder (shown in Figure 5.3) operates by estimating
the difference in signal value between the predicted value and the actual
input value. The structure of the adaptive predictor in the higher-band
encoder is identical to the one in the lower sub-band encoder, but the
names in memory of the adaptive predictor coefficients differ by an “1”
“h” to make the program more understandable. The number of bits
required to represent the difference is smaller than the number of bits
required to represent the total input signal. This difference is calculated by
subtracting the predicted value from the input value:

or

el (n)
eh(n)

x1l(n) - sl(n)
xh(n) - sh(n)
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The predicted value (s1 (n) or sh(n) ) is produced by the adaptive
predictor, which contains a second-order section to model poles, and a
sixth-order section that models zeroes in the input signal. For every
received sample, (x1 (n) or xh (n) ), upzero updates the six zero
section coefficients of the predictor, uppol2 calculates the second pole
section coefficient, and uppoll calculates the first pole section
coefficient.

| .
. ©L 60 Level L 48 kbit/s
XL ; Adaptive >
. gP Quantizer
A Delete the
Two LSBs
Ay
Quantizer I
Adaptation - Lt
4
15 Level
- Inverse
Adaptive
d Quantizer
s LH
Adaptive
- Predictor it j)}’) .
% +
+

Figure 5.3 Lower Sub-Band Encoder Block Diagram

Operation is similar to the operation of the higher sub-band decoder
except a 60-level adaptive quantizer is applied rather than a 4-level
quantizer.

An important feature of the lower sub-band encoder is the feedback loop.
The feedback loop is used for adaptation of the 60-level adaptive

quantizer and to update the adaptive predictor. To do this, inside the
feedback loop, the two least significant bits of I1 are truncated to produce
a 4-bit difference signal, T1t . Since this value was already passed through
the adaptive quantizer, an inverse adaptive quantizer produces d1t . This
is a quantized difference signal that the adaptive predictor uses to produce
s1 (the estimate of the input signal) and update the adaptive predictor.

Four-bit operation (rather than 6-bit) leaves room for the auxiliary data
channel in the lower sub-band encoder.
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5.4 RECEIVE PATH

This section describes the decoder and receive path, shown in Figure 5.1.
While the encoder operates at 64 kbits/s, the decoder accepts encoded
signals at 64, 56 and 48 Kbits/s. The two lower bit rates correspond to the
availability of an auxiliary data channel that uses either 8 or 16 Kbits/s.
The auxiliary data channel is described as a data insertion device that is
totally separate from the G.722 encoder and decoder. Bits from the
auxiliary data channel are simply carried over the same transmission
medium as the G.722 encoded data.

The different bit rates available at the input of the decoder (depending on
whether the auxiliary data channel is used) are referred to as the “modes”

you must indicate the desired mode.

MODE 7 kHz audio coding bit rate Auxiliary data channel rate
1 64 Kbits/s 0 Kbits/s

2 56 Kbits/s 8 Kbits/s

3 48 Kbits/s 16 Kbits/s

Table 5.1 Decoder Modes Of Operation

5.4.1  Higher Sub-Band Decoder

The higher sub-band decoder (see Figure 5.4) is the simplest element of
sub-band ADPCM. There are no choices to make for inverse adaptive
quantizers or mode control to indicate word truncation. Instead, the input
code word, Th, is fed into the 4-level inverse adaptive quantizer (to obtain
Dh ) and into the quantizer adaptation segment in parallel. The adaptive
predictor generates the signal estimate Sh and adds to this the output of
the inverse adaptive quantizer to generate the decoder output signal, Rh.

I 4 Level d
H Inverse H
- > Adaptive

16 kbit/s Quantizer

r
—— H

A

o Adaptive
AL Predictor

Quantizer
Adaptation

Figure 5.4 Higher Sub-Band Decoder Block Diagram
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5.4.2 Lower Sub-Band Decoder

Figure 5.5 is a functional block diagram of the lower sub-band decoder.
Generally, the higher and lower sub-band decoders and encoders share
the same subroutine calls in almost the same order because they are
similar in operation. In the lower sub-band decoder, however, the mode
indication signal determines how many bits are truncated from the input
codeword I1lr and which inverse adaptive quantizer is chosen in the
feedback loop. Table 5.2 shows you the correlation between the Mode and

the number of levels for the inverse adaptive quantizer.

'

15 Level
Mode (I Inverse )

o Delete
Indication > 2 LSBs > Adaptive o

ILa Quantizer

| | 30 Level
Lr Delete LS Inverse -

Selection

- Adaptive
48 kbits/s 1Ls8 Quar':tizer

dis

!

Delete I 60 Level
2LSBs Lr Inverse

a

- Adaptive o

Quantizer a

It

Quantizer »
Adaptation

15 Level

Inverse
Adaptive i
Quantizer

dit

Adaptive SL

. + "t Predictor
+

Figure 5.5 Lower Sub-Band Decoder Block Diagram
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MODE Inverse adaptive quantizer levels
1 60-level
2 30-level
3 15-level

Table 5.2 Inverse Adaptive Quantizer Modes Of Operation

In both the quantizers and inverse quantizers for the lower and higher
sub-bands, indexed indirect memory access is used to read and write
memory. An index of a data table is calculated (for example, see quant1
subroutine, adaptive quantizer in the lower sub-band); this index is added
to the base address of the data table and a single-cycle memory fetch is
executed to obtain the desired address value.

5.4.3  Receive Quadrature Mirror Filter

The receive quadrature mirror filter interpolates the output of the decoder
from 8 kHz to 16 kHz for input to the receive audio signal. The filter is a
24 tap finite impulse response filters whose impulse response can be
approximated as a simple delay function.

5.5 ADSP-2100 FAMILY IMPLEMENTATION

The G.722 code implementation is a parameter set-up shell that calls
subroutines corresponding to the subroutines listed in the CCITT
recommendation. This is useful for the following reasons:

* Memory savings—both the encoder and decoder (and in some cases
both sub-bands) use many of the same routines

¢ Easy transition from full-duplex to half-duplex implementation—copy
the shell that includes the appropriate sub-routine calls

Circular buffering is used in the G.722 algorithm in several places: as
delay lines in the receive and transmit quadrature mirror filters and in the
adaptive predictor (a separate one for both encoder and decoder and both
upper and lower sub-bands). The circular buffering implementation
maintains only the necessary pieces of information (specific number of
delay values). It does not require code to maintain the data or require
extraneous memory to store the data and time to service it.
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5.6 SUBROUTINE DESCRIPTIONS

This section contains brief descriptions of the subroutines used to
implement CCITT Recommendation G.722.

5.6.1 reset_mem

This subroutine initializes the state variables required for correct operation

of the algorithm. You must call the reset_mem routine before running

the encoder or decoder. The reset_mem routine also does the following

things:

¢ Initializes the linear and circular buffers required by the filters,
encoder, and decoder

e Sets up pointers (data memory values) to the circular buffers so the
index registers do not need to be dedicated to the circular buffers

* Set up modify and length registers that will remain constant for the
remainder of the algorithm

5.6.2 filtez

This subroutine computes the output of the zero section of the adaptive
predictor by multiplying the zero section coefficients by the quantized
difference signal butfer values. Higher and lower sub-band encoders and
decoders use this subroutine.

5.6.3 filtep

This subroutine computes the output of the pole section of the adaptive
predictor by multiplying the pole section coefficients by the quantized
reconstructed signal buffers. Higher and lower sub-band encoders and
decoders use this subroutine.

5.6.4 quantl

This subroutine calculates the encoder output codeword based on the
difference in signal value and the quantizer scale factor, det1 (calculated
in scalel below).

This subroutine fetches data words from the look-up tables included in the
G.722 recommendation. It is necessary to first compute an index that
locates the magnitude of the signal difference relative to the quantizer
decision levels. This is accomplished in the 111 loop. The decision levels
(stored as a program memory data table) are multiplied by the quantizer
scale factor and subtracted from the magnitude of the difference in signal
value; if this value is less than zero, a flag is incremented to give the
desired index. This index is then added to the address of the codeword
data table and the correct six-bit codeword is chosen. Only the lower sub-
band encoder uses this subroutine.
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5.6.5 invgxl

This subroutine represents the invgal and invgbl sections of the
algorithm. invgal computes the lower sub-band quantized difference in
signal value for the adaptive predictor of the encoder and decoder.
invgbl computes the quantized difference in signal value for the decoder
output in the lower sub-band decoder. Since these two routines are
identical except for the presence of the “mode” signal (decoder only), they
are merged to save code space. Again, this subroutine is based on an
indexed table look-up, and the choice of tables depends on the mode of
operation. For the encoder, you supply a constant to choose the correct
table (and number of bits to be truncated). For the decoder, the shell
program mathematically determines which table is chosen according to
the mode you define. Similar to quant1, an index is calculated and added
to the indicated table as an offset.

5.6.6 logscl

This subroutine updates the logarithmic scale factor in the lower sub-band
encoder and decoder. It is an indexed table look-up subroutine with limits
imposed on the output value, nbpl.

5.6.7  scalel

This subroutine computes the quantizer scale factor in the lower sub band
encoder and decoder. In addition to scaling output values, this subroutine
performs an indexed table look-up.

5.6.8  upzero

This subroutine determines six zero section predictor coefficients. The
output values (a buffer of size six) depend on the value and signs of the
quantized difference in signal value, some leakage and gain constants, the
delayed difference signal values, and old zero-section predictor
coefficients.

5.6.9  uppol2

This subroutine generates the second pole predictor coefficient. It is
determined from the sign and value of the partially reconstructed signal
pl, some leakage and gain constants, and the old (delayed) pole predictor
coefficients.

5.6.10 uppol

This subroutine generates the first pole predictor coefficient. It depends on
the delayed first pole predictor coefficient, some leakage and gain
constants, plt and the old (delayed) pole predictor coefficients.
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5.6.11  limit

This subroutine limits the output reconstructed signals for both lower and
higher sub-band decoders.

5.6.12 quanth

This subroutine quantizes the difference in signal value in the higher sub-
band encoder based on the magnitude of the signal, the higher sub-band
quantizer scale factor, and a decision level indexed table look-up.

5.2.13 invqah

This subroutine computes the quantized difference in signal value in the
higher sub-band encoder and decoder, based on the higher sub-band
quantizer scale factor and the higher sub-band decoder output codeword,
Ih,in indexed table look-up manner.

5.6.14 logsch

This subroutine determines the logarithmic quantizer scale factor in the
higher sub-band encoder and decoder. This subroutine involves
calculations for leakage and scale factors, and imposes some limits on the
output signal.

Note: In addition to the routines mentioned above, several routines are
performed in the shell itself. They are implemented in the shell because
they are short, and because it saves two cycles (call and rts) for every
execution. The following routines are implemented in the shell:

¢ SUBTRA
RECONS
e PARREC

Also, the delay blocks DELAYZ, DELAYL, and DELAYA are implemented
with the following two step process:

1. Variables (both single words and buffers) are given their initial value
in reset_mem .

2. Variables are updated after processing through either the decoder or

encoder with the newly computed value. They will contain the correct
data for the next iteration through the system.
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.module/ram/abs=0 g722;

2 variables for filters here
.var/ram/dm/circ tgmf_buf[23];
.var/ram/dm accumab_ptr;
.var/ram/pm coefs[24];

.init coefs: <coeffs.dat>;
.var/ram/dm x1;
.var/ram/dm/circ accumc[11];
.var/ram/dm/circ accumd[11];
.var/ram/dm accumc_ptr;
.var/ram/dm accumd_ptr;
.var/ram/dm xh;

.var/ram/dm xoutl;

.var/ram/dm xout2;

.var/ram/dm XS;

S e e e e variables for encoder (hi and lo) here
.var/ram/dm il;

.var/ram/dm mode;

.var/ram/dm szl;

.var/ram/dm spl;

.var/ram/dm sl;

.var/ram/dm el;

.var/ram/dm store_this;
.var/ram/pm coded_table[0x20];
.init code4_table:<codword4.dat>;
.var/ram/pm code5_table[0x40];
.init code5_table:<codword5.dat>;
.var/ram/pm codeb_table[0x80];
.init codeé6_table:<codword6.dat>;
.var/ram/pm qgg6_table[0x807;
.init gg6_table: <quanté6.dat>;
.var/ram/pm ag5_table[0x10];
.init gg5_table: <quant5.dat>;
.var/ram/pm gad_table[8];
.init gg4_table <quantd.dat>;
.var/ram/dm delay_bpl([6];
.var/ram/dm dltx_ptr;
.var/ram/dm fbuf[6];
.var/ram/dm tbuf[6];
.var/ram/dm/circ delay_dltx[71];
.var/ram/dm i14;

.var/ram/pm wl_table[8];

.init wl_table: <wl.dat>;
.var/ram/pm ilb_table[32];
.init ilb_table: <ilb.dat>;
.var/ram/dm nbl; /* delay line */
.var/ram/dm all;

.var/ram/dm al2;
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.var/ram/dm
.var/ram/dm
.var/ram/dm
.var/ram/dm
.var/ram/dm
.var/ram/dm
.var/ram/dm
.var/ram/dm
.var/ram/dm
.var/ram/dm
.var/ram/pm
.init decis_levl:
.var/ram/dm
.var/ram/pm
.init guant26bt_pos:
.var/ram/pm
.init quant26bt_neg:
.var/ram/dm
.var/ram/dm
.var/ram/dm
.var/ram/pm
.init bit_out2:
.var/ram/dm
.var/ram/dm
.var/ram/dm
.var/ram/dm
.var/ram/dm
.var/ram/dm
.var/ram/dm
.var/ram/dm
.var/ram/dm/circ
.var/ram/dm
.var/ram/dm
.var/ram/dm
.var/ram/dm
.var/ram/dm
.var/ram/dm
.var/ram/dm
.var/ram/dm
.var/ram/dm
.var/ram/dm

.var/ram/dm
.var/ram/dm
.var/ram/dm
.var/ram/dm
.var/ram/dm
.var/ram/dm
.var/ram/dm
.var/ram/dm
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plt;

pltl;

plt2;

rs;

dlt;

apll;

apl2;

rlt;

rltl;

rlt2;
decis_lev1[29];
<gbshft3.dat>;
detl;
quant26bt_pos[30];
<guantép.dat>;
quant26bt_neg[301];
<gquantén.dat>;
deth;

sh; /* this comes from adaptive predictor */
eh;
bit_out2([4];
<bit_ih2.dat>;
dh;

ih;

nbh;

szh;

sph;

ph;

yh;

rh;
delay_dhx[7];
delay_bph{6];
dhx_ptr;

ahl;

ah2;

aphl;

aph2;

phl;

ph2;

rhl;

rh2;

... variables for decoder here ..........ciiiieeno... */

ilr;

yl;

rl;

dec_deth;
dec_detl;
dec_dlt;
dec_del_bpl(6];
dec_dltx_ptr;

(listing continues on next page)
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.var/ram/dm/circ

.var/ram/dm
.var/ram/dm
.var/ram/dm
.var/ram/dm
.var/ram/dm
.var/ram/dm
.var/ram/dm
.var/ram/dm
.var/ram/dm
.var/ram/dm
.var/ram/dm
.var/ram/dm
.var/ram/dm
.var/ram/dm
.var/ram/dm
.var/ram/dm
.var/ram/dm
.var/ram/dm

/* e

.var/ram/dm
.var/ram/dm

.var/ram/dm/circ

.var/ram/dm

/* e

.var/ram/dm
.var/ram/dm
.var/ram/dm
.var/ram/dm
.var/ram/dm
.var/ram/dm
.var/ram/dm
.var/ram/dm
.var/ram/dm
.var/ram/dm
.var/ram/dm
.var/ram/dm
.var/ram/dm

/* e

/* oo, encode:
...... myl = first value, mx0 = second value .
.... returns il and ih stored together in axO0

306

dec_del_dltx[7];
dec_apll;
dec_apl2;
dec_plt;
dec_pltl;
dec_plt2;
dec_szl;
dec_spl;
dec_sl;
dec_rltl;
dec_rlt2;
dec_rlt;
dec_all;
dec_al2;
dl;
dec_nbl;
dec_vyh;
dec_dh;
dec_nbh;

............ variables used in filtez .......

dec_del_bph[6];
dec_dhx_ptr;

/* pointer for circ buffer index - hi sb dec */

dec_del_dhx[7];
dec_szh;

............ variables used in filtep .......

dec_rhl;
dec_rh2;
dec_ahl;
dec_aphl;
dec_ah2;
dec_aph2;
dec_ph;
dec_sph;
dec_sh;
dec_xh;
dec_phl;
dec_ph2;
X_num;

...... starting with lower sub band encoder .
..... if in reset, initialize required memory

put input samples in myl and mx0(calling parameters) .....
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S e e e decode: calling parameters: ilr and xh ................ */

/* ... return parameters: xoutl and xout2 (in ax0 and axl respectively) ... */

/% e note: supply mode signal to decoder also (in dm) ........... */

encode: mstat = 0x0;

10 = dm(accumab_ptr);

10 = 23;

mo0 = 2; /* skipping through buffer with a stride of 2 */
i5 = ~coefs;

15 = 0;

mé6 = 2;

si = mx0 ;

mr = 0, my0O = pm(i5,m6);

cntr = 11;

do e_loop until ce;

/* ....main multiply accumulate loop for even samples and coefficients .... */
e_loop: mr = mr + mx0 * myO(ss), mx0 = dm(i0O,m0), my0O = pm(i5,m6) ;
dm(i0,m2) =myl, mr = mr + mx0 * myO(ss); /* final mult/accumulate */

/* and write to delay line */

/* .. save mr here, want xa (contents of mr) to be at least 24 bits wide .. */

/* oo, so start moving mr outputs into alu regs for multiprecision ...... */
sr0 = mrl;
ay0 = mro0; /* for multiprecis add in hight and lowt */
cntr = 11;
i5 = "coefs+1l;
mr = 0,mx0 = dm(i0,m0), myO = pm(i5,m6) ;
do o_loop until ce;

/* e main loop for mult/accum odd inputs and coefficients ......... */
o_loop: mr = mr + mx0 * myO(ss), mx0 = dm(iO,m0), myO = pm(i5,m6) ;
modify (i0,m0) ;
modify (i0,m0) ;
dm(i0,m2) = si, mr = mr + mx0 * myO(ss); /* final mult/accumulate */

/* and write to delay line */
lowt: ar = mr0 + ay0, ayl = sr0; /* add low precis word from loop first */
ena ar_sat;
ar = mrl + ayl + C; /* need 16 bits of info, but to keep precise */
dis ar_sat; /* this is x1, needs to be limited */
call chk_vals;
dm(x1l) = ar;
hight: ar = ay0 - mr0, ayl = sr0;

ena ar_sat;
ar = ayl - mrl + C -1; /* subtract with borrow */
dis ar_sat;
call chk_vals;
dm(xh) = ar;
dm(accumab_ptr) = 10;
(listing continues on next page)
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5 Sub-Band ADPCM

..... into regular encoder segment here - consider filters embedded .....

mstat = 0x8;

il = ~delay_bpl;

15 = dm(dltx_ptr);

15 = 7;

10 = 0;
....... filtez - compute predictor output section - zero section .......

. calling params: 1l points to delay_bpl, 12 points to delay_dltx ....

..................... return parameters: mrl (szl) . ...t

call filtez;

dm(szl) = ar;

sr0 = dm(rltl);

my0 = dm(all);

ax0 = dm(rlt2);

myl = dm(al2);
........ filtep - compute predictor output signal (pole section) ........
.................. calling params: sr0, my0O, srl, myl ........couuuueeo..
..................... return parameters ar (spl) ...,

call filtep;
predic:compute the predictor output value in the lower sub_band encoder
not a subroutine but a small piece of code to compute predictor output
................. adding together szl + spl to form sl .................

dm(spl) = ar;

ay0 = dm(szl)

ar = ar + ay0;

dm(sl) = ar;

ay0 = dm(x1l); /* this is subtra x1l - sl = el (diff. signal) */

ar = ay0 - ar;

dm(el) = ar;
................ quantl: quantize the difference signal ................
........ calling params: el(ar), detl (which has value at reset) ........
............. return parameters: il (4 bit codeword) in ax0 .............

call gquantl;

dm(il) = ax0;

myO = dm(detl);

ay0 = 3; /* this is mode for block 41 */

mr0 = ax0;

ayl = “coded_table; /* remember, this will change w/ invgbl
invgxl: does both invgal and invgbl- computes quantized difference signal
.............. for invgbl, truncate by 2 1lsbs, so ay0 = 3 ....... ...
................ calling parameters: il(mr0), detl(my0) ................
............. and ayl(address of correct table for codeword .............
...................... return paramters: dlt(mrl) .......ciiiiiiennennnn
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call invaxl;
modify (i5,m7) ;

mé

0;

*/

*/
*/
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*/
*/
*/

*/
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*/
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dm(i5,m6) = mril;
mr0 = dm(nbl) ;

ar = dm(il);
/* ....logscl: updates logarithmic quant. scale factor in low sub band .... */
/* L., calling parameters: il (ilr in decoder) - in ar , nbl in mrO ..... */
/* oL, return parameters: nbl used next time - note - same var name ..... */

call logscl;
dm(nbl) = ar;

ayl = 8;
/* ... scalel: compute the quantizer scale factor in the lower sub band ... */
/* calling params nbl(in ar) and 8(constant such that scalel can be scaleh */
2N return parameter: detl ... ...ttt */

call scalel;
dm(detl) = sr0;
ax0 = dm(i5,m5);
ay0 = dm(szl);

/* parrec - simple addition to compute recontructed signal for adaptive pred */

S E e e e e e no subroutine, just in place .........ieiiiiiiennn. */
/* e add predictor zero section + quantized diff signal .......... */
ar = ax0 + ay0;
dm(plt) = ar;
/* ... upzero: update zero section predictor coefficients (sixth order) ... */
/* oo, calling parameters: dlt(sr0); dlti(circ pointer for delaying ..... */
[ e e e dltl, dlt2, ..., dlté from dlt .........ciiiiin.. */
/* e bpli (linear_buffer in which all six values are delayed ........ */
/* e e return params: updated bpli, delayed dltX .......c..ouu... */
il = ~delay_bpl;
call upzero

mx0 = dm(al2);
si = dm(plt);

mr0 = dm(pltl);
mrl = dm(plt2);

/* . uppol2- update second predictor coefficient apl2 and delay it as al2 . */

J* e e e calling parameters: all, al2, plt, pltl, plt2 ............. */
S e e e return parameters: apl2 (in ar) ....eeeeeeneeneeeann */
N note: apl2 is limited tO +=.75 i iii ittt */

call uppol2;

dm(apl2) = ar;

dm(al2) = ar;

mr0 = dm(pltl);

mx0 = dm(all);

ayl = dm(apl2)

si = dm(plt);

(listing continues on next page)
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/* .. uppoll

:update first predictor coefficient apll and delay it as all ..

calling parameters:

/*

................ note
call uppoll;
dm(apll) =ar;

: wd3=

dm(all)

/*
/*
/*

dm(rlt)

/*

recons

ar;

parameters:

dm(sl) ;
dm(store_this) ;
ax0 + ay0;
ar;

modify (15, m5) ;

ax0

dm(rlt2)
dm(rltl)

ax0

dm(plt2)

ax0

dm(pltl)
dm(dltx_ptr)

hi_sb_enc:il

dm(rltl);
ax0;
ar;
dm(pltl);
ax0;
dm(plt) ;
ax0;

= 1i5;
~delay_bph;

all, a

sl (ax0),

return parameters:

pl2, plt

.9375-.75 is always positive

compute recontructed signal for adaptive predictor

dlt (ay0)
rlt (ar)

/* save 15 in dltx_ptr,

, pltl

done with lower sub_band encoder; now implement delays for next time

restore next time */

/*
/*

/*

/*

i5 =

dm (dhx_ptr);

call filtez;

Sy

dm(szh)
sr0
my 0
ax0
myl

call filtep;

dm (sph) ar;
ay0 dm(szh) ;
ar ar + ay0;
dm(sh) ar;
ay0 = dm(xh) ;
ar ay0 - ar;
dm (eh) ar;

my 0 dm(deth) ;

quanth:

filtez:

calling parms:

calling params:

calling params:
return paramns:

sr0,

return params: ar

/* predic:

/* subtra:

eh(ar), deth

ax0,
ar (szh)

my 0,
(sph)

sh sph + szh */

eh xh - sh */

(has init. wvalue)

* /
*/
*/

*/

*/

*/
*/
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L e e return: 1h In ax0 .. ..ottt */
call quanth;
dm(ih) = ax0;
ay0 = ax0;

/* invgah: compute the quantized difference signal in th ehigher sub_band */
[* e e calling parameters: ih(in ax0); deth(in myO) ............. */
/* .., .e++..... return parameters: dh (in mrl) ........... .. . ... */
call invgah;
modify (i5,m7) ;

m6=0;
dm(i5,m6) = mrl;
ay0 = dm(ih);

my0 = 0x7f£00;
mx0 = dm(nbh) ;

/* ... logsch: update logarithmic quantizer scale factor in hi sub band ... */
/* e calling paameters: ih(ay0), nbh(mx0), my0 has a constant ....... */
2 return parameters: updated nbh (in ar) ................ */

call logsch;
dm(nbh) = ar;
ayl = Oxa;

/* L. note : scalel and scaleh use same code, different parameters ..... */
call scalel;
dm(deth) = sr0;

/* . parrec - add pole predictor output to quantized diff. signal (in place . */
ax0 = dm(i5,m5);
ay0 = dm(szh);

ar = ax0 + ay0;

dm(vh) = ar:

dm{ph) = ar;
/* ... upzero: update zero section predictor coefficients (sixth order) ... */
/e calling parameters: dh(sr0); dhi(circ), bphi (circ) .......... */
2o return params: updated bphi, delayed dhx ............... */

il = "~delay_bph;
call upzero;

/* oo, uppol2: update second predictor coef aph2 and delay as ah2 ...... */
S e e e e e calling params: ahl, ah2, ph, phl, ph2 ................ */
2T return params: aph2 (in ar) . ..ot eeeeneeeennn */
2 JE note: aph2 is limited to +- .75 ...ttt */

ax0 = dm(ahl);

ay0 = ax0;

mx0 = dm(ah2);

si = dm(ph);

mr0 = dm(phl);

mrl = dm(ph2);

call uppol2;

dm(aph2) = ar;

dm (ah2) = ar;

(listing continues on next page)
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/* .... uppoll: wupdate first predictor coef. aph2 and delay it as ahl

Y A note: wd3 = .9375 -.75 is always positive ...............
mr0 = dm(phl);
mx0 = dm(ahl);
ayl = dm(aph2?);

call uppoll;

dm(apll) = ar;
dm(ahl) = ar;

ax0 = dm(sh);

ay0 = dm(store_this);
ar = ax0 + ay0;

dm(yh) = ar;
/* .. limit determines the greatest and smallest magnitude of the ......
2T recontructed output signal .........c..ciiiiniinann.
J* e e calling params: yl (in ar); return params: rh (in ar) .........
/* oo, done with higher sub-band encoder, now Delay for next time ......

ax0 = dm(rhl);
dm(rh2) = ax0;

dm(rhl) = ar;
ax0 = dm(phl);
dm (ph2) ax0;

ax0 = dm(ph) ;
dm(phl) = ax0;
modify (15, m5) ;
dm (dhx_ptr) = i5;

[* e multiplexing ih and il to get signals together ............
si = dm(ih);
ar = dm(il);
sr = lshift si by 6(lo);
sr = sr or 1shift ar by 0(lo);
ax0 = sr0;
S e e e multiplexed transmission word in ax0 .................
rts; /* done with encode */
e e e e e e e LOWER SUB_BAND DECODER ...t ettt eeneenennennnnn
/* e, expect to split transmitted word from ax0 into ilr and ih.......

decode: ay0 = 0x3f;
ar = ax0 and ay0;
dm(ilr) = ar;
ay0 = 0xc0;
ar = ax0 and ay0;
sr = 1lshift ar by -6 (lo);
dm(ih) = sr0; /* place ih in two 1lsb’s of sr0 */

lo_sb_dec:
mstat = 0x8;
il = ~dec_del_bpl;
i5 = dm(dec_dltx_ptr);
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YA S filtez: compute predictor output for zero section ........... */
/* .. calling parmeters: addresses of zero section input and output bufs .. */
/* ... ... .......... return parameters: del_szl (in mrl) .................. */

call filtez;

dm(dec_szl) = ar;

sr0 = dm(dec_rltl);

my0 = dm(dec_all);

ax0 = dm(dec_rlt2);

myl = dm(dec_al2);

/* .. filtep: compute predictor output signal for pole section ....... */
/* oo, calling parameters: dec_rltl, dec_rlt2, dec_all and dec_al2 ...... */
e return parameter: del_spl (in ar) ................ ... */

call filtep;

dm(dec_spl) = ar;

ay0 = dm(dec_szl);

ar = ar + ayo0;

dm(dec_sl) = ar;

ay0 = 3;

mr0 = dm(ilr);

ayl = "“coded_table;

my0 = dm(dec_detl);

/* invgxl: compute quantized difference signal for adaptive predic in low sb */
Y/ N calling parameters: my0O, mr0O, ayl , ay0 ................ */
/2 return parameters: mrl (dec_dlt) ............c....... */

call invgxl;

modify (i5,m7) ;

m6=0;

dm(i5,m6) = mrl;

ay0 = dm(mode) ;

mr0 = “coded_table;

mrl = "“code5_table;

sr0 = "“code6_table;

ax0 = 2;

axl = 3;

af = ay0 - 1;

if eq ar = pass sr0;

af = ay0 - ax0;

if eq ar = pass mrl;

af = ay0 - axl;

if eq ar = pass mr0;

ayl = ar;
mr0 = dm(ilr);
myO = dm(dec_detl);

(listing continues on next page)
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/* invgxl: compute quantized difference signal for decoder output in low sb */

2o calling parameters: myO, mr0, ayl , ay0 ...oviennun... */
e e e e e e e e return parameters: mrl( dl) .........c.iiiiiiiin... */
call invagxl;
dm(dl) = mrl;

ay0 = dm(dec_sl);
ar = mrl + ay0;
dm(yl) = ar;

2o limit: calling parameters y1 (@r) «....uuuunneenennn. */
X e e e e return parameters: rl (Qr) ....iuiiiiinnneenn. */
call limit;
dm(rl) = ar;

/* ....logscl: quantizer scale factor adaptation in the lower sub-band .... */
/* ... calling parameters: dec_nbl (in mrl, dm(il4) calculated in invagxl ... */
mr0 = dm(dec_nbl);
ar = dm(ilr);
call logscl;

dm(dec_nbl) = ar;

ayl = 8;
/* .. scalel: computes quantizer scale factor in the lower sub band ..... */
/* .. calling params: updated dec_nbl, and ayl for integer part scaling .. */

call scalel;
dm(dec_detl) = sr0;

/* . parrec - add pole predictor output to quantized diff. signal(in place . */
o for partially reconstructed signal ...........oeueu.o.. */
ax0 = dm(i5,m5);
ay0 = dm(dec_szl);
ar = ax0 + ay0;
dm(dec_plt) = ar;
il = "dec_del_bpl;

/* e e upzero: update zero section predictor coefficients .......... */
/*calling params: dec_dlt(sr0),dec_dlti(circ buffer),dec_bpli(linear buffer)*/
J* e e return parameters: updated dec_bpli, delayed dec_dlti ......... *x/
/* .. note: am saving the index (i) register for circ buffers to mem..... */

call upzero;

ax0 = dm(dec_all);
ay0 ax0;

mx0 dm(dec_al2);
si = dm(dec_plt);
mr0 = dm(dec_pltl);
mrl = dm(dec_plt2);

i u

/* . uppol2: update second predictor coefficient apl2 and delay it as al2 . */
/* . calling parameters: all(ax0), al2(mx0), plt(si), pltl(mr0), plt2(mrl) . */
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2 return parameters: apl2 (in ar) ........oiennen... */

call uppol2;

dm(dec_apl2) = ar;

dm(dec_al2) = ar;

mr0 = dm(dec_pltl);

mx0 dm(dec_all) ;

ayl dm(dec_apl2) ;

si = dm(dec_plt);

/* e e uppoll: update first predictor coef. (pole setion) .......... */
/* calling params: dec_pltl (mr0), dec_plt(si), dec_all (mx0), dec_apl2(ayl) */
2 return parameter: apll (in ar) ........eeiiieeeenn. */

call uppoll;

dm(dec_apll) = ar;

dm(dec_all) = ar;

ax0 = dm(dec_sl);
ay0 = dm(store_this);

/r e recons : compute recontructed signal for adaptive predictor ...... */
[X e adding together dec_sl(ax0), dec_dlt(ay0) .............. */
ar = ax0 + ay0;
dm(dec_rlt) = ar;
/* ... done with lower sub band decoder, implement delays for next time ... */

modify (i5,m5) ;
ax0 = dm(dec_rltl);

dm(dec_rlt2) = ax0;

dm(dec_rltl) = ar;

ax0 = dm(dec_pltl);

dm(dec_plt2) = ax0;

ax0 = dm(dec_plt);

dm(dec_pltl) = ax0;

dm(dec_dltx_ptr) = i5;

/2 HIGH SUB-BAND DECODER . .. ittt ittt ittt eeeennnnn */

il = ~dec_del_bph;
i5 = dm(dec_dhx_ptr);

Y2 filtez: compute predictor output for zero section ........... */
/* .. calling parameters: addresses of zero section input and output bufs .. */
e e e e return parameters: dec_shl (in mrl) ............oeo... */

call filtez;

dm(dec_szh) = ar;

sr0 = dm(dec_rhl) ;

my0 = dm(dec_ahl) ;

ax0 = dm(dec_rh2);

myl = dm(dec_ah2);

(listing continues on next page)
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/* e, filtep: compute predictor output signal for pole section ....... */
/* ... calling parameters: dec_rhl, dec_rh2, dec_ahl and dec_ah2 ....... */
S e e e e e return parameter: dec_sph (in ar) ..........oeuiuenen.. */

call filtep;
dm(dec_sph) = ar;

/* predic:compute the predictor output value in the higher sub_band decoder */
T adding dec_szh and dec_sph to form dec_sh ............... */

ay0 = dm(dec_szh);

ar = ar + ay0;

dm(dec_sh) = ar;

ax0 = dm(ih);

ay0 = ax0;

my0 = dm(dec_deth);

/* invgah: compute the quantized difference signal in th ehigher sub_band */
[* e calling parameters: ih(in ax0); deth(in my0) ............. */
2o P return parameters: dec_dh (in mrl) ............cc.0... */

call invgah;

modify (i5,m7) ;

m6=0;

dm(i5,m6) = mrl;

ay0 = dm(ih);

my0 = O0x7£00;

mx0 = dm(dec_nbh) ;

/* ... logsch: update logarithmic quantizer scale factor in hi sub band ... */
/* L. calling parameters: ih(ay0), dec_nbh(mx0), myO has a constant ..... */
S e e e e return parameters: updated dec_nbh (in ar) .............. */

call logsch;
dm(dec_nbh) = ar;

ayl = Oxa;
/* ... scalel: compute the quantizer scale factor in the higher sub band ... */
/* calling params: dec_nbl(in ar) and 10 (constant so that scalel is re-used */
o return parameter: dec_deth(in sr0) ...........ccv... */

call scalel;
dm(dec_deth) = sr0;
ax0 = dm(i5,m5);

ay0 = dm(dec_szh);
S e e parrec: compute partially recontructed signal ............. */
/X e e e add together ax0(dec_dh), ay0 (dec_szh) ................ */

ar = ax0 + ay0;
dm (dec_ph) =ar;
il = ~dec_del_bph;

/X e e upzero: update zero section predictor coefficients .......... */
/* calling params: dec_dh (sr0), dec_dhi(circ buffer), dec_bph(linear buf */
/e return parameters: updated dec_bph, delayed dec_dhi .......... */
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/* .....note: am saving the index (i) register for circ buffers to mem ..... */

call upzero;

ax0 = dm(dec_ahl);

ay0 = ax0;

mx0 = dm(dec_ah?2);

si = dm(dec_ph);

mr0 = dm(dec_phl);

mrl = dm(dec_ph2):;
/* uppol2: update second predictor coefficient aph2 and delay it as ah2 */
/* .. calling parameters:dec_ahl (ax0),dec_ah2 (mx0),dec_ph(si) ........ */
2 dec_phl(mr0),dec_ph2 (mrl .....c.uiiineeennnnnnnnn */
2 return parameters: aph2 (in ar) ........oeeeueenn... */

call uppol2;

dm(dec_aph2) = ar;

dm(dec_ah2) = ar;

mr0 = dm(dec_phl);

mx0 = dm(dec_ahl);

ayl = dm(dec_aph2);
/X e e uppoll: update first predictor coef. (pole setion) .......... */
/*calling parameters: dec_phl (mr0), dec_ph(si), dec_ahl (mx0), dec_aph2(ayl)*/
/2 return parameter: aphl (in ar) .........cc.ciuueun.. */

call uppoll;

dm(dec_aphl) = ar;

dm(dec_ahl) = ar;

ax0 = dm(dec_sh);

ay0 = dm(store_this);
/* e, recons : compute recontructed signal for adaptive predictor ...... */
X e e add parameters: dec_sh(ax0), dec_dh(ay0) ............... */
I e e to get parameters: dec_vhi{ar) ....... ... ... */

ar = ax0 + ayO0;

dm(dec_vyh) = ar;
2o implementing delays for next time here ................ */

ax0 = dm(dec_rhl);

dm(dec_rh2) = ax0;

dm(dec_rhl) = ar; /* ar has dec_yh */

ax0 = dm(dec_phl) ;

dm(dec_ph2) = ax0;

ax0 = dm(dec_ph) ;

dm(dec_phl) = ax0;

modify (i5,m5) ;

dm (dec_dhx_ptr) = 1i5;
J* e limit: limiting the output reconstructed signal ............ */
/22 S calling params:dec_yvh(in ar) ........uouieineenn.. */
T return parameters: dec_rh(in ar) .........eeeeeeenen. */

call limit;
dm(rh) = ar; . g .
(listing continues on next page)
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/* L.,
recv_agmf:

318

.............. end of higher sub_band decoder

....... start with receive quadrature mirror filters .............

mstat = 0x0;

i5 = “~coefs;

15 = 0;

i0 = (accumc_ptr) ;
mO0 = 0;

10 = 11;

il = dm(accumd_ptr);
11 = 11;

me = 2;

ena ar_sat;

ax0 = dm(rl);
ay0 = dm(rh);
ar = ax0 + ay0;

dm(xs) = ar;

ar = ax0 - ay0;
dis ar_sat;

mx0 = ar;

si = ar;

cntr = 11;

mr = 0, myO = pm(i5,m6) ;
do accumc_loop until ce;

accumc_loop: mr
my0 = pm(i5,m6) ;
(ss);

mr = mr + mx0 * myO
modify (i0,ml) ;

sr = ashift mrl by -15(hi);
sr = sr or lshift mr0 by -15(lo);

dm(i0,m2) = si;

ar = pass sr0;

call chk_vals;

dm(xoutl) = ar;

i5 = “~coefs +1;

mr = 0, myO = pm(i5,m6) ;
cntr = 11;

mx0 = dm(xs) ;

si = mx0;

do accumd_loop until ce;

accumd_loop: mr
my0 = pm(i5,m6) ;

mr = mr + mx0 * myO(ss);
modify (il,ml) ;

sr = ashift mrl by -15(hi);
sr = sr or lshift mr0 by -15(lo);

dm(il, m2) = si;
ar =pass sr0;
call chk_vals;

dm(xout2) = ar;
dm(accumc_ptr) = i0;
dm (accumnd_ptr) = il;
rts;

/* xXs in af

/* xd in ar

*/

*/

mr + mx0 * myO(ss), mx0 = dm(iO,m3),

/* could leave this in a register */

mr + mx0 * myO(ss), mx0 = dm(il,m3),
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reset_mem: ax0 = 1;
dm(rs) = ax0;
ax0 = 0x8;
dm(deth) = ax0;
dm(dec_deth) = ax0;
ax0 = 0x20;
dm(detl) = ax0;
dm(dec_detl) = ax0;
ax0 = 0
(nbl)
)
)

7

ax0;
( ax0;
( ax0;
( ax0;
( ax0;
( ax0;
( ax0;
( ax0;
( ax0;
( ax0;
( ax0;
( ax0;
( ax0;
( ax0;
(dec_rltl) = ax0;
(dec_rlt2) ax0;
(

(

(

(

(

(

(

(

(

(

(

(

L | | R | B | N TR

I

rh2

I

dec_all) ax0;
dec_al2) ax0;
dec_nbl) ax0;
dec_pltl) ax0;
dec_plt2) ax0;
dec_rhl) ax0;
ax0;
ax0;
ax0;
ax0;
ax0;
ax0;

L | | N | R [ B 1

m
dec_ahl)
dec_ah?2

)
dec_nbh)
dec_phl)

)

EE88EEEEEE858585558585885585888888

[ |

(listing continues on next page)
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ml:l;

m5 = 1;

m3 = -1;

m7 = -1;

m2 = 0;

i5 = ~delay_dltx;
15 = 7;

cntr = 7;

do init_circO0 until
init_circO:

i5 = ~delay_dhx;

cntr = 7;

do init_circl until
init_circl:

i5 = ~dec_del_dltx;

cntr = 7;

do init_circ2 until
init_circ2:

i5 = ~dec_del_dhx;

cntr = 7;

do init_circ3 until
init_circ3:

i0 = ~delay_bpil;

10 =0;

il = ~delay_bph;
11 = 0;

15 = ~dec_del_bpl;
15 = 0;

i6 = ~dec_del_bph;
16 = 0;

cntr = 0x6;

ce;
dm(i5,m5)

ce;
dm(i5,m5)

ce;
dm(i5,m5)

ce;
dm(i5,m5) =

do init_lin until ce;

dm(i0O,ml) =
dm(il,ml) =
dm(i5,m5) =
init_lin: dm(i6,m5)
i0 = ~tbuf;
il = ~fbuf;

cntr = 6;

0;
0;
0;
= 0;

do init_temp_bufs until ce;

dm(i0,ml) =
init_temp_bufs: dm(i
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0;
1,ml) = 0;

/* initialize temporary buffers */



/*
/*

Sub-Band ADPC

/* set up pointers for circular buffers, restore at the end of

ax0 = "~delay_dltx;
dm(dltx_ptr) = ax0;

ax0 = "delay_dhx;
dm(dhx_ptr) = ax0;

ax0 = "dec_del_dltx;
dm(dec_dltx _ptr) = ax0;
ax0 = "~dec_del_dhx;
dm(dec_dhx_ptr) = ax0;

........... set up pointers for circ. buffers in filters
.................. initialize circ buffers in mem .......

10=0;
cntr = 23;
do init_tgmf until ce;
init_tgmf: dm(iO,ml) = 0O;
il = "~accumc;
11=0;
i5. = ~accumd;
15=0;
cntr = 11;
do init_fil until ce;
dm(i5,m5) = 0;
init_fil: dm(il,ml) = 0;
ax0 = ~tgmf_buf; /* these are input values */
dm(accumab_ptr) = ax0;
ax0 = "“accumc;
dm(accumc_ptr) = ax0;
ax0 = "accumd;
dm(accumd_ptr) = ax0;
15 = 7; /* final set up for length
ml = 1;
m5 = 1;
m2 = 0;
m3 = -1;
m7 = -1;
11 = 0;
rts;

M 5

. save circ buffer index ptrs in mem, may need them in the future .... */
. set up permanent length and index registers for encoder/decoder .... */

encode/decode */

register */

(listing continues on next page)
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5 Sub-Band ADPCM

filtez: mr = 0, ay0 = dm(i5,m5); /* il points to bpl */
/* 12 points to delay buffer (dltx) */
i0 = ~fbuf; /* io is temp buffer for adding delay line values */

ar = pass ay0, my0 = dm(il,ml);
ar = ar + ay0;
cntr = 6;
do m_loop until ce;
mr = ar * myO(ss), ay0 = dm(i5,m5);
dm(i0,ml) = mrl;
ar = pass ay0, my0 = dm(il,ml);
m_loop: ar = ar + ay0;

i0 = ~fbuf;
ar = pass 0;
cntr = 6;

do filtl until ce;

ay0 = dm(iO,ml);
filtl: ar = ar + ayo0;
rts;

filtep: ayl = sr0;

ar = sr0 + ayl; /* add rltl + rltl */

mr = ar * myO(ss), ayl = ax0; /* multiply by all */

ay0 = mrl; /* save wdl in ay0 */

ar = ax0 + ayl, ay0 = mrl; /* ar = rlt2 + rlt2,wdl in ay0 */
mr = ar * myl(ss); /* wd2 * al2 in mrl */

ar = mrl + ay0; /* wdl + wd2 */

rts;

quantl: sr ashift ar by -15(1lo);

inon

af pass sr0;

if eqg jump cont;

ay0 = Ox7fff;

af = ay0 - ar, ax0 = ay0; ar = ax0 and af;
cont: i6 = "~decis_levl;

ayl = 0;

ay0 = ar;

myO0 = dm(detl);

af = pass 0, mx0 = pm(i6,m5);

cntr = 0x1d;

do 111 until ce;
mr = mx0 * myO(ss), mx0 = pm(i6,m5);
ar = ay0 - mrl;
if 1t af = af + 1;

111: ar = pass af;

/* 10 has mil starting from 1 */

ayl = Oxle; /* process i0 now from ayl */
ar = ayl - ar;
af = pass af; /* if el is greater than table values */
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invgxl:

offset_0:

get_sign:

Sub-Band ADPCM 5

if eq ar = pass ayl; /* mil gets 30 */
i6 = ar;

ar = “quant26bt_neg;

ay0 = "“quant26bt_pos;

af = pass sr0;

if eq ar = pass ay0;

af = pass ar;

ar = af - 1; /* offset by 1 to start addressing from 0 */
m6 = ar;

modify (i6,m6) ;

ax0 = pm(i6,m6) ;

rts;

/* invagxl is either invgbl or invgal depending on params passed */

ar = ay0 - 1; /* ay0 is passed in to indicate */
ar = -ar; /* how many bits to shift by */
se = ar;

sr = lshift mr0(lo);

sr = ashift sr0 by 1(lo);
ar = sr0 + ayl;

i6 = ar;

mrl ~qgg6é_table;

mr0 = “gg5_table;

sr0 = “gg4_table;

n

mr2 = 2;

srl = 3;

af = ay0 - 1,ax0 = pm(i6,m5); /* save value from table here */
if eq ar = pass mrl;

af = ay0 - mr2,axl = pm(i6,m5); /* save sign from table here */

if eq ar = pass mr0;

af = ay0 - sril;

if eq jump offset_0;

af = pass ax0;

ar = ar + af;

af = pass ar;
/* work around here; gg4 starts */
/* at offset 0, gg5 & gg6 at 1 */

ar = af -1; /* need this for gg5 & gg6, not 4 */

jump get_sign;

ar = pass sr0;
af = pass ax0;

ar = ar + af; /* no offset for gg4, values start at 0 */
i6 = ar;

ar = pm(i6,m5) ;

sr = ashift ar by 3(lo); /* now add sign */

af = pass axl, ar= sr0; /* if its neg, negate value */

if 1t ar = -ar;

mr = ar * myO(ss); /* round off here, check it out */

rts;

(listing continues on next page)
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logscl: my0O = 0x7£00; /* compensating for scale factor 32512 */
mr = mr0 * myO(SS); /* wd in mrl */
sr = 1lshift ar by -2(lo);

= ashift sr0 by 1(lo);

ayl = "“coded_table;

ar = sr0 + ayl;

1

0]
e
|

i6 = ar;

m6 = 0;

ax0 = pm(i6,m6) ;

ay0 = "“wl_table; /* use value from coded4_table as index */
ar = ax0 + ay0; /* into wl_table */

i6 = ar;

ayl = pm(i6,m6); /* address for wl(il4) here */

ar = mrl + ayl; /* nbpl here */

ay0 = 0x4800;
af = pass ar;

if 1t af = pass 0; /* limiting ar - if >18432 */
/* nbpl gets 18432 */
ar = ar - ay0; /* 1f < 0 gets 0 */

if gt af = pass ayO0;
ar = pass af;

rts; /* this is new delay value */
scalel: si = ar;

sr = ashift ar by -6(hi);

ay0 = Ox1f;

ar = srl and ayO0; /* and with 31 - ar has WDl */

mr0 = ar; /* this is wdl in mr0 */

sr = ashift si by -11(lo); /* this gives wd2 in sr0 */

ar = ayl - sr0; /* ayl has 8 for scalel */

/* and 10 scaleh */

ar = -ar;

se = ar; /* se gets 8 - wd2 */

ayl= "ilb_table;

ar = mr0 + ayl;

i6 = ar; /* use wdl as index in ilb_table */

ar = pm(i6,m5) ;

sr = ashift ar (lo): /* wd3 = ilb(wdl) >> (8-wd2) */

sr = ashift sr0 by 2(lo);

rts;

upzero: ay0 = ax0;
se = -15;
mx0 = 0x7£80;
ar = pass ay0;
if eqg jump wdi_over;
ay0 = 0x80;
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wdi_over: sr = ashift ar(lo),si = dm(i5,m5);

ayl = sr0;

cntr = 6;

do upzero_1 until ce;
sr = ashift si(lo), si = dm(i5,m5);
axl = sr0;
af = pass ay0;
ar = axl - ayl, my0 = dm(il,m2);

if ne af = -af;
mr = mx0 *myO(ss);
ar = mrl + af;
upzero_l:dm(il,ml) = ar;
dm(store_this) = si;
rts;
uppol2: ar = ax0 + ay0; /* mx0 has al2, ay0,ax0 have all */

/* si has plt,mr0 has pltl,mrl has plt2 */
af = pass ar;
ar = ar + af;

se = -15;

sr = ashift si(lo), ay0 = ar; /* wdl in ay0 */
ayl = sr0; /* sg0 in ayl */
sr = ashift mr0(lo); /* sgl in sr0 */
ar = sr0 xor ayl;

ar = ay0;

if eq ar = -ay0; /* wd2 in ar */
sr = ashift ar by -7(lo);

ax0 = sr0; /* wd2 in ax0 */
axl = 0x80;

sr = ashift mrl(lo); /* sg2 in srQ */
ar = sr0 xor ayl;

Ar — avl.

if ne ar = - axl;

af = pass ar;

ar = ax0 + af; /* wd2 + wd3 = wd4d */

myO0 = 0x7£00;

mr = mx0 * myO (ss);

ayl = mrl;

ar = ar + ayl; /* apl2 = wd4 + wd5 */
ay0 = 0x3000;

ar = abs ar;

af = ar - ay0;

if gt ar = pass ay0; /* note: apl2 limited to + .75 */
if neg ar = -ar;
rts;

(listing continues on next page)
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uppoll:

limit:

quanth:

continue:

ashift mr0 by -15(lo);

ay0 = 0xc0;

sr = ashift si by -15(1lo);
af = pass sr0;

sSY =

ar = sr0 xor af;

ar = ay0;

if ne ar = - ay0;

myO0 = 0x7£80;

mr = mx0 *
ar = mrl + ay0;

myO (ss),

ar;

ayQ

/*

/*

/*

mr0 = ar;
ax0 = 0x3c00;
ar = ax0 - ayl;
ayl = ar;
ar = abs mr0;
af = ar - ayl;
if gt ar = pass ayl;
if neg ar = -ar;
rts;
axl = ar;
af = pass axl;
ayl = Ox3fff;
ar = axl - ayl;
ar = pass ar;
if gt af = pass ayl;
ayl = 0xc000;
ar = axl- ayl;
ar = pass ar;
if 1t af = pass ayl;
ar = pass af;
rts;
sr = ashift ar by -15(1lo);
af = pass sr0;
if eq jump continue;
ay0 = Ox7fff;
ax0 = O0x7fff;
af = ay0 - ar;
ar = ax0 and af;
af = pass 0,ay0 =
ayl = 2;
mx0 = 0x1llaO0;
mr = mx0 * myO (ss);
ar = mrl - ay0;
if le af = pass 1;
ar = pass af;
af = pass 0, axl =

ar;

/* sg0 in af */
/* sgl in sr0 */

ar;

apll before limits = wdl + w2

wd3 in ar, ayl has apl2 */
note: wd3 is always<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>